Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Cancer Res ; 84(3): 449-467, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38038966

ABSTRACT

The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE: Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Osteoclasts/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Glutamine/pharmacology , Bone Neoplasms/secondary , DNA , Glutathione , Cell Line, Tumor , Tumor Microenvironment
2.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38138165

ABSTRACT

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Female , Humans , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Apoptosis Regulatory Proteins/therapeutic use , HCT116 Cells , Tumor Suppressor Protein p53/genetics , Survivin/metabolism , Survivin/pharmacology , Survivin/therapeutic use , Melanins/metabolism , Melanins/pharmacology , Melanins/therapeutic use , Apoptosis , bcl-2-Associated X Protein/genetics , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Antineoplastic Agents/therapeutic use , Breast Neoplasms/genetics , Cell Line, Tumor
3.
Zhonghua Zhong Liu Za Zhi ; 45(7): 584-593, 2023 Jul 23.
Article in Chinese | MEDLINE | ID: mdl-37337129

ABSTRACT

Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Male , Female , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Consensus , Ovarian Neoplasms/drug therapy , Drug Interactions , Adenosine Diphosphate Ribose/therapeutic use
4.
Chin Clin Oncol ; 12(3): 21, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37211773

ABSTRACT

BACKGROUND: Mutations in the BRCA1/2 (BRCA) genes are associated with response to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). In addition, there are different homologous recombination deficiency (HRD) biomarkers available in clinical practice [e.g., genome-wide loss-of-heterozygosity (gLOH) and myChoice® score] that identify patients who can benefit from PARPi. Inconsistencies in biomarkers used in PARPi clinical trials make it challenging to identify clinically relevant predictive biomarkers. This study aims to compare clinically available HRD biomarkers in terms of benefits from PARPi. METHODS: We performed database search for phase II or III randomized clinical trials comparing PARPi versus chemotherapy, and meta-analysis using generic inverse variance and a Random Effects model. Patients were classified according to their HRD status: (I) BRCAm (patients with BRCA mutation of germline or somatic origin); (II) non-BRCA HRD [patients BRCA wild-type (wt) with another HRD biomarker-gLOH or myChoice®]; and (III) homologous recombination proficiency (HRP) (BRCAwt and without HRD biomarkers). From those that were BRCAwt, we compared myChoice®+ with gLOH-high. RESULTS: Five studies (3,225 patients) analyzing PARPi in first line setting were included. Patients with BRCAmut had progression-free survival (PFS) with hazard ratio (HR) 0.33 [95% confidence interval (CI): 0.30-0.43]; patients with non-BRCA HRD had a PFS HR 0.49 (95% CI: 0.37-0.65), and patients with HRP had a PFS HR 0.78 (95% CI: 0.58-1.03). Eight studies (5,529 patients) with PARPi including first line and recurrence settings were included. BRCAmut had PFS HR 0.37 (95% CI: 0.30-0.48), BRCAwt & HRD 0.45 (95% CI: 0.37-0.55) and HRP 0.70 (95% CI: 0.57-0.85). Patients with BRCAwt & myChoice® ≥42 had PFS HR 0.43 (95% CI: 0.34-0.56), similar to patients with BRCAwt & gLOH-high with PFS HR 0.42 (95% CI: 0.28-0.62). CONCLUSIONS: Patients with HRD derived significantly more benefit from PARPi when compared to patients with HRP. The benefit of PARPi in patients with HRP tumors was limited. Careful cost-effectiveness analysis, and alternative therapies or clinical trial enrollment should strongly be considered for patients with HRP tumors. Among patients with BRCAwt, a similar benefit was found in patients with gLOH-high and those myChoice®+. The clinical development of further HRD biomarkers (e.g., Sig3) may help identify more patients who benefit from PARPi.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Homologous Recombination , Biomarkers
5.
J Med Chem ; 66(10): 6922-6937, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37185020

ABSTRACT

Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.


Subject(s)
Ovarian Neoplasms , Ruthenium , Humans , Animals , Female , Ruthenium/pharmacology , Ruthenium/therapeutic use , Zebrafish , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Phthalazines/pharmacology , Phthalazines/therapeutic use , DNA , Cell Line, Tumor
6.
Clin Transl Oncol ; 25(11): 3057-3072, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37079210

ABSTRACT

Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Synthetic Lethal Mutations , Neoplasm Recurrence, Local/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mutation
7.
Cell Rep ; 42(1): 112027, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848231

ABSTRACT

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Subject(s)
Leukemia , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Synthetic Lethal Mutations , Vitamins
8.
J Ethnopharmacol ; 302(Pt A): 115899, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36336219

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L., commonly known as St. John's Wort (SJW), represents one of the best-known and most thoroughly researched medicinal plant species. The ethnobotanical usage and bioactivities related to H. perforatum include treatment of skin diseases, wounds and burns, gastrointestinal problems, urogenital diseases and psychiatric disorders, particularly depression. In the last decade, many studies focused on the bioactive constituents responsible for the antihyperglycemic and antidiabetic activity of SJW extracts. However, the mechanism by which H. perforatum extract exhibits these properties is still unclear. Hence, the current study was designed to gain insight into the underlying biochemical and molecular mechanisms by which wildly growing H. perforatum exerts its antihyperglycemic and antidiabetic activities. MATERIAL AND METHODS: Plant material of H. perforatum was harvested from a natural population in the Republic of North Macedonia during full flowering season. Methanol (80% v/v) was used to extract bioactive components from HH powder. The dissolved HH dry extract (in 0.3% CMC) was given daily as a single treatment (200 mg/kg bw) during 14 days both in healthy and streptozotocin-induced diabetic rats. As a positive control, we applied glibenclamide. The activity of key enzymes involved in carbohydrate methabolisam in the liver were assessed, along with substrate concentration, as well as AMPK mRNA levels, PKCε concentration, plasma insulin level and pancreatic PARP activity. RESULTS: Compared to diabetic rats, treatment of diabetic rats with HH extract resulted with decreased activity of hepatic enzymes glucose-6-phospatase and fructose-1,6-bisphosphatase, increased liver glycogen and glucose-6-phosphate content, which resulted with reduced blood glucose concentration up to normoglycaemia. Non-significant changes were observed in the activity of hexokinase, glycogen phosphorylase and glucose-6-phospahte dehydrogenase. HH-treatment also caused an increase in plasma insulin concentration and increase in pancreatic PARP activity. Finally, HH treatment of diabetic rats showed significant increase in AMPK expression and decrease of PKCε concentration. CONCLUSION: We present in vivo evidence that HH- extract exert insulinotropic effects and regulate endogenous glucose production mostly by suppressing liver gluconeogenesis. The HH-treatment did not effected glycogenolysys and glycolysis. Finally, we confirm the antihyperglycemic and antidiabetic effect of HH-extract and the mechanism of this effect involves amelioration of AMPK and PKCε changes in the liver.


Subject(s)
Diabetes Mellitus, Experimental , Hypericum , Rats , Animals , Hypericum/chemistry , AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental/drug therapy , Gluconeogenesis , Protein Kinase C-epsilon , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Oils/therapeutic use , Insulin , Glucose
9.
Phytother Res ; 37(2): 452-463, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36122906

ABSTRACT

To target benign prostatic hyperplasia (BPH) as a common urinary disease in old men, in the current study, the antiproliferative and apoptotic mechanism of SH-PRO, a mixture of Angelica gigas and Astragalus membranaceus (2:1), was evaluated in BPH-1 cells and rats with testosterone-induced BPH. Herein, SH-PRO significantly reduced the viability of BPH-1 cells and dihydrotestosterone (DHT)-treated RWPE-1 cells. Also, SH-PRO increased the sub-G1 population in BPH-1 cells and consistently attenuated the expression of pro-PARP, pro-caspase 3, Bcl2, FOXO3a, androgen receptor (AR), and prostate-specific antigen (PSA) in BPH-1 cells and DHT-treated RWPE-1 cells. Of note, SH-PRO generated reactive oxygen species (ROS) in BPH-1 cells, while ROS inhibitor N-acetyl-l-cysteine (NAC) disturbed the ability of SH-PRO to reduce the expression of pro-PARP, FOXO3a, catalase, SOD, and increase sub-G1 population in BPH-1 cells. Furthermore, oral treatment of SH-PRO significantly abrogated the weight of the prostate in testosterone-treated rats compared to BPH control with the reduced expression of AR, PSA, and DHT and lower plasma levels of DTH, bFGF, and EGF with no toxicity. Overall, these findings highlight the antiproliferative and apoptotic potential of SH-PRO via ROS-mediated activation of PARP and caspase 3 and inhibition of FOXO3a/AR/PSA signaling as a potent anti-BPH candidate.


Subject(s)
Prostatic Hyperplasia , Male , Humans , Rats , Animals , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/chemically induced , Prostate-Specific Antigen , Reactive Oxygen Species/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Receptors, Androgen/metabolism , Caspases , Caspase 3 , Plant Extracts/therapeutic use , Testosterone/adverse effects
10.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5890-5899, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472008

ABSTRACT

This study aims to investigate the effect of ethoxysanguinarine(Eth) on cisplatin(DDP)-resistant human gastric cancer cells and decipher the underlying mechanism. The human gastric cancer cell line SGC7901 and the DDP-resistant cell line SGC7901/DDP were used as the cell models. Western blot was employed to determine the expression levels of multidrug resistance-related proteins, and methyl thiazolyl tetrazolium(MTT) assay to detect the proliferation of SGC7901 and SGC7901/DDP cells exposed to DDP. After treatment with different concentrations of Eth, the proliferation of SGC7901 and SGC7901/DDP cells was detected by MTT assay, trypan blue exclusion assay, colony formation assay, and high-content imaging and analysis system. The apoptosis of SGC7901/DDP cells was detected by flow cytometry with Annexin V-FITC/PI staining. GFP-LC3 transfection was carried out to detect the effect of Eth on the autophagy of SGC7901/DDP cells. The expression levels of the multidrug resistance-related protein P-glycoprotein(P-gp), the apoptosis-related proteins [caspase-9, caspase-3, and poly(ADP-ribose) polymerase(PARP)], the autophagy-related protein light chain 3-Ⅱ(LC3-Ⅱ), the key effectors [mammalian target of rapamycin(mTOR), 70 kDa ribosomal protein S6 kinase(P70 S6 K), and 4 E binding protein 1(4 E-BP1)] of the mammalian target of rapamycin complex 1(mTORC1) signaling pathway, cancerous inhibitor of protein phosphatase 2A(CIP2A), and protein kinase B(Akt) were measured by Western blot. The mRNA level of CIP2A in the SGC7901/DDP cells exposed to Eth for 24 h was analyzed by RT-qPCR. After SGC7901/DDP cells were transfected with CIP2A expression vector pcDNA3.1-HA-CIP2A and treated with different concentrations of Eth, MTT assay was used to determine the prolife-ration of SGC7901/DDP cells and Western blot to detect the expression levels of related proteins. The interaction sites of Eth and CIP2A were predicted by molecular docking. The affinity between Eth and CIP2A was determined by drug affinity responsive target stability(DARTS) assay. The pharmacokinetic properties and drug-like activity of Eth were predicted by SwissADME. The results indicated that SGC7901/DDP cells were more sensitive to Eth than SGC7901 cells. Eth significantly inhibited proliferation and colony formation and changed the morphology, roundness, and area of SGC7901/DDP cells. Eth treatment caused the nucleus shrinking and significantly increased the apoptosis rate of the cells. Furthermore, Eth down-regulated the expression of caspase-9 and caspase-3 precursors and promoted the cleavage of PARP, which suggested that Eth induced the apoptosis of SGC7901/DDP cells. The GFP-LC3 in Eth-treated cells showed speckled aggregation. The up-regulated expression of LC3-Ⅱ by Eth indicated that Eth activated the autophagy of SGC7901/DDP cells. Eth down-regulated the expression of P-gp, the phosphorylation of mTOR, P70 S6K, and 4E-BP1, the expression of CIP2A, and the phosphorylation of Akt. Additionally, it increased the activity of PP2A, and had no significant effect on the expression of CIP2A in SGC7901/DDP cells. CIP2A overexpression antagonized the inhibition of cell proliferation and the activation of autophagy by Eth. Molecular docking suggested that Eth bound to CIP2A. The results of DARTS assay further proved the above binding effect. Eth has potential drug-like activity. The above results demonstrated that Eth inhibited the proliferation, induced the apoptosis, and activated the autophagy of SGC7901/DDP cells by targeting CIP2A and then down-regulating PP2A/mTORC1 signaling pathway. This study provided a new target for the treatment of cisplatin-resistant gastric cancer.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Caspase 9/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caspase 3/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Autophagy , Apoptosis , Cell Proliferation , Apoptosis Regulatory Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Line, Tumor
11.
Biomed Pharmacother ; 156: 113976, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411668

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with limited treatment options. Given this fact, it may be important to develop new molecular targeted therapies from natural products, especially those which are primary sources of effective anticancer drugs with distinct mechanisms. Moreover, the complementary use of traditional herbs or fruit may increase the possibility of finding curative options for cancer. Here we explore the anticancer effects and possible molecular mechanism of Barhi date extract using an HCC rat model. Thirty two male albino rats were arbitrarily allocated into four groups: a negative control group (NCG); a positive control group (PCG), which received CCl4 (1 ml/kg b.wt./ i.p.) twice a week for three months; a Barhi date extract (400 mg/kg b.wt./day/orally) treatment group (DTG) during the third month of CCl4 administration; and a cisplatin (1.5 mg/kg b.wt./ i.p.) treatment group ( CTG) during the third month of CCl4 administration. After treatment we performed biochemical analyses of all groups to assess relative eukaryotic initiation factor 2 alpha (eIF2α), extracellular signal-regulated kinases (ERKs), protein kinase RNA-like endoplasmic reticulum kinase (PERK), poly (ADP-ribose) polymerase (PARP), and CASPASE 3 protein content, and examined expression of the genes phosphatase and tensin homolog (PTEN) and protein kinase B (AKT). We also performed an immunohistochemistry assay for alpha-fetoprotein (AFP). Our data showed higher PARP and CASPASE3 levels and liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]) in the PCG compared to the DTG and the cisplatin treatment group CTG. However, we also found a significant decrease in PTEN in the PCG relative to both the DTG and the CTG. We conclude that the anti-tumor activity of Barhi date extract may be mediated by the inhibition of cell proliferation and apoptosis via the ERK /PARP/caspase3 pathway and the AKT/ PTEN signaling pathways.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phoeniceae , Animals , Carcinoma, Hepatocellular/pathology , Cisplatin/therapeutic use , Liver Neoplasms/pathology , Phoeniceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt , Rats
12.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3312-3319, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851125

ABSTRACT

The effect of paeoniflorin on apoptosis and cell cycle in human B-cell acute lymphoblastic leukemia(B-ALL) and its underlying mechanism were investigated in this study. Nalm-6 and SUP-B15 cells were cultured in vitro and divided into control group(0 µg·mL~(-1)) and experimental groups(200, 400, and 800 µg·mL~(-1) paeoniflorin). Cell counting kit-8(CCK-8) was used to measure the viability of Nalm-6 and SUP-B15 cells, and cell apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blot was used to detect the protein levels of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase(cleaved PARP), c-Myc, and small ubiquitin-like modifier-specific protease 1(SENP1). The mRNA levels of c-Myc and SENP1 in acute lymphoblastic leukemia(ALL) patients were analyzed based on the Oncomine database. AutoDock was used for molecular docking to analyze the interaction of paeoniflorin with c-Myc and SENP1 proteins. RESULTS:: showed that paeoniflorin inhibited the viability of Nalm-6 and SUP-B15 cells in concentration and time-dependent manners. Compared with the control group, paeoniflorin significantly up-regulated the expression of apoptosis-related proteins cleaved caspase-3 and cleaved PARP to induce apoptosis, evidently increased the proportion of G_2/M phase cells and induced G_2/M phase arrest, and obviously down-regulated the expression of c-Myc and SENP1 proteins in Nalm-6 and SUP-B15 cells. The mRNA levels of c-Myc and SENP1 in ALL patients were higher than those in the normal cell. Molecular docking demonstrated that paeoniflorin had good binding to c-Myc and SENP1 proteins. In summary, paeoniflorin inhibits the proliferation of Nalm-6 and SUP-B15 cells by inducing apoptosis and G_2/M phase arrest, which may be related to the down-regulation of c-Myc and SENP1 proteins.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/pharmacology , Cysteine Endopeptidases/therapeutic use , Glucosides , Humans , Molecular Docking Simulation , Monoterpenes , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger
13.
J Clin Oncol ; 40(24): 2681-2692, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35649230

ABSTRACT

Use of germline genetic testing among patients with cancer is increasing because of (1) the availability of multigene panel tests that include multiple cancer susceptibility genes in a single test, (2) decreased costs of these tests and improvements in insurance coverage, and (3) US Food and Drug Administration-approval of genotype-directed therapies such as poly(ADP-ribose) polymerase inhibitors for individuals with certain cancers and pathogenic germline variants in BRCA1 and BRCA2 (with possible benefits with other genes in the homologous repair deficiency pathway). In addition, National Comprehensive Cancer Network guidelines have already endorsed germline genetic testing for all patients with certain cancer types (epithelial ovarian cancer, exocrine pancreatic cancer, and high-grade/metastatic prostate cancer), regardless of age or personal/family history of cancer. Herein, we debate the pros and cons of offering germline multigene panel testing to all patients diagnosed with any GI cancer. The authors agree that it may just be a matter of time before germline multigene panel testing is offered to all patients with cancer; however, this article will highlight some of the benefits, risks, and limitations of this approach so that research can help fill some of the gaps to ensure that genetic medicine continues to be implemented in ways that improve real-world patient care and outcomes.


Subject(s)
Germ-Line Mutation , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/drug therapy , Female , Genetic Predisposition to Disease , Genetic Testing , Germ Cells , Humans , Male , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
14.
J Integr Med ; 20(5): 463-472, 2022 09.
Article in English | MEDLINE | ID: mdl-35752587

ABSTRACT

OBJECTIVE: "Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts. METHODS: Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency. RESULTS: Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk. CONCLUSION: Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.


Subject(s)
Papillomavirus Infections , Thuja , Uterine Cervical Neoplasms , Animals , Apoptosis , Autophagy , Beclin-1/pharmacology , Bicyclic Monoterpenes , Caspase 3 , Cell Line, Tumor , Female , Humans , Mammals/metabolism , Mice , Molecular Docking Simulation , Papillomavirus Infections/drug therapy , Phosphatidylinositol 3-Kinases , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Reactive Oxygen Species/metabolism , Thuja/chemistry , Thuja/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
15.
Proc Natl Acad Sci U S A ; 119(11): e2121979119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259019

ABSTRACT

SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Repair , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Models, Molecular , Molecular Structure , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Synthetic Lethal Mutations
16.
Journal of Integrative Medicine ; (12): 463-472, 2022.
Article in English | WPRIM | ID: wpr-939901

ABSTRACT

OBJECTIVE@#"Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts.@*METHODS@#Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency.@*RESULTS@#Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk.@*CONCLUSION@#Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.


Subject(s)
Animals , Female , Humans , Mice , Apoptosis , Autophagy , Beclin-1/pharmacology , Bicyclic Monoterpenes , Caspase 3 , Cell Line, Tumor , Mammals/metabolism , Molecular Docking Simulation , Papillomavirus Infections/drug therapy , Phosphatidylinositol 3-Kinases , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Reactive Oxygen Species/metabolism , Thuja/metabolism , Uterine Cervical Neoplasms/pathology
17.
Cancer J ; 27(6): 432-440, 2021.
Article in English | MEDLINE | ID: mdl-34904806

ABSTRACT

ABSTRACT: The emergence of clinical trial data for poly(ADP-ribose) polymerase inhibitors (PARPi), in BRCA-associated ovarian cancer (epithelial ovarian cancer [EOC]) in 2009 (Lancet 2010;376:245-251) unleashed a rapid series of additional asset development and clinical trial activation across all lines of EOC treatment, ultimately leading to 8 new approvals of 3 different PARPi in EOC since 2014. Monotherapy iPARPi were approved as frontline maintenance treatment for all patients with EOC who respond to platinum-based chemotherapy irrespective of biomarker (niraparib) and for BRCA-associated cancers (olaparib) (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1; https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf). Combination of olaparib and bevacizumab was approved as maintenance for patients in response to platinum-based and bevacizumab containing frontline therapy whose tumor is characterized as homologous recombination deficient and as approved test by the Food and Drug Administration, inclusive of BRCA-associated cancers (N Engl J Med 2019;381:2416-2428). Niraparib, olaparib, and rucaparib were also approved as maintenance treatment following response to platinum-based therapy in the recurrent setting irrespective of biomarker (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1; https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf; https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf). All 3 PARPi were also approved as treatment in lieu of chemotherapy for patients with BRCA-associated cancers in third line and beyond (https://www.azpicentral.com/lynparza_tb/lynparza_tb.pdf#page=1;https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209115s003lbl.pdf) and platinum-sensitive homologous recombination deficient in the fourth line and beyond (https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf), as well as the National Comprehensive Cancer Network listed in combination with bevacizumab for treatment of patients with platinum-sensitive recurrent disease (https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf). Ongoing clinical trials in all lines of treatment are evaluating combinations of therapies to improve efficacy among biomarker negative tumors as well as overcome acquired PARPi resistance due to prior use.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Humans , Neoplasm Recurrence, Local , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
18.
Biomed Pharmacother ; 139: 111628, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33940508

ABSTRACT

Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , DNA Topoisomerases, Type I/drug effects , Pinus/chemistry , Plant Extracts/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Signal Transduction/drug effects , Caspases/metabolism , DNA Topoisomerases, Type I/genetics , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
19.
Cell Mol Biol (Noisy-le-grand) ; 66(7): 31-34, 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33287919

ABSTRACT

This research aimed to discover and identify new poly ADP-ribose polymerase-1 (PARP) inhibitors with potent anti-cervical carcinoma activity, and then explore their potential biological roles on cervical carcinoma cell. For this purpose, we identified a new PARP inhibitor from a high-throughput virtual screening method and found that the compound strongly inhibited cervical carcinoma HeLa cell. Cell proliferation was evaluated by an MTT assay, and the cell apoptosis was assessed by flow cytometry. Results showed that PARP1 is a poly ADP-ribose catalyzing enzyme in eukaryotic cells, which is activated during DNA damage and repair, and plays an important role in DNA repair and cell apoptosis. Herein we report the first discovery of a new PARP inhibitor from a high-throughput virtual screening method, then the compound was measured its anti-cervical carcinoma activity by using an MTT assay, which suggested that the compound strongly inhibited HeLa cell proliferation, the IC50 value is 0.65 µM. In addition, the compound induced HeLa cell apoptosis in a dose-response manner. All these data suggested that the compound is a promising lead compound, which deserves further investigation. It is concluded that the compound discover herein is a promising PARP-1 inhibitor with potent anti-cervical carcinoma activity, which deserves further investigation.


Subject(s)
Drug Development , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Female , HeLa Cells , Humans , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors/analysis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
20.
Clin Adv Hematol Oncol ; 18(9): 550-556, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33006584

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) inhibitors have been rapidly integrated into clinical practice for women with ovarian cancer. Currently, PARP inhibitors are approved as frontline maintenance treatment for patients with and without BRCA-associated cancers, and they are listed by the National Comprehensive Cancer Network (NCCN) as a treatment option for all high-grade serous and endometrioid cancers with or without bevacizumab. PARP inhibitors are also approved as maintenance treatment following a response to platinum-based therapy in the recurrent setting, irrespective of biomarker status. Additionally, PARP inhibitors are approved as third-line treatment and beyond in lieu of chemotherapy for patients with BRCA-associated cancers, and as fourth-line treatment and beyond for patients with platinum-sensitive homologous recombination-deficient tumors. They are also listed by the NCCN in combination with bevacizumab for the treatment of patients who have platinum-sensitive recurrent disease. The first part of this 2-part review focuses on the changing paradigm of frontline therapy options resulting from the recent approvals of PARP inhibitors; the second part considers the role of PARP inhibition in recurrent ovarian cancer.


Subject(s)
Bevacizumab/therapeutic use , Carcinoma, Ovarian Epithelial , Neoplasm Proteins , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/enzymology , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL