Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428157

ABSTRACT

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Subject(s)
Carboxy-Lyases , Pyrus , Pyrus/genetics , Pyrus/metabolism , Sucrose/metabolism , Glutamic Acid/metabolism , Fruit/metabolism , Chlorophyll/metabolism , Cell Wall , Pectins/metabolism , Carboxy-Lyases/metabolism , gamma-Aminobutyric Acid/pharmacology , Polyamines/metabolism
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473716

ABSTRACT

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Subject(s)
Mesenchymal Stem Cells , Spermidine , Humans , Spermidine/metabolism , Spermine/metabolism , Spermine Synthase/genetics , Ornithine Decarboxylase/metabolism , Osteogenesis , Polyamines/metabolism , Mesenchymal Stem Cells/metabolism , RNA, Messenger
3.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504107

ABSTRACT

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Subject(s)
Ferroptosis , Iron Overload , Neoplasms , Humans , Polyamines/metabolism , Ferroptosis/genetics , Hydrogen Peroxide , Cell Line, Tumor , Arginine , Neoplasms/genetics
4.
Cell Oncol (Dordr) ; 47(1): 321-341, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37684512

ABSTRACT

PURPOSE: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets. METHODS: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay. RESULTS: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis. CONCLUSIONS: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Ferroptosis , Pancreatic Neoplasms , Humans , Gemcitabine , Cisplatin/pharmacology , Cisplatin/therapeutic use , Spermine/therapeutic use , Spermidine/metabolism , Spermidine/therapeutic use , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Polyamines/metabolism , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use
5.
Nutrients ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111071

ABSTRACT

(1) Background: Spermidine is a biogenic polyamine that plays a crucial role in mammalian metabolism. As spermidine levels decline with age, spermidine supplementation is suggested to prevent or delay age-related diseases. However, valid pharmacokinetic data regarding spermidine remains lacking. Therefore, for the first time, the present study investigated the pharmacokinetics of oral spermidine supplementation. (2) Methods: This study was designed as a randomized, placebo-controlled, triple-blinded, two-armed crossover trial with two 5-day intervention phases separated by a washout phase of 9 days. In 12 healthy volunteers, 15 mg/d of spermidine was administered orally, and blood and saliva samples were taken. Spermidine, spermine, and putrescine were quantified by liquid chromatography-mass spectrometry (LC-MS/MS). The plasma metabolome was investigated using nuclear magnetic resonance (NMR) metabolomics. (3) Results: Compared with a placebo, spermidine supplementation significantly increased spermine levels in the plasma, but it did not affect spermidine or putrescine levels. No effect on salivary polyamine concentrations was observed. (4) Conclusions: This study's results suggest that dietary spermidine is presystemically converted into spermine, which then enters systemic circulation. Presumably, the in vitro and clinical effects of spermidine are at least in part attributable to its metabolite, spermine. It is rather unlikely that spermidine supplements with doses <15 mg/d exert any short-term effects.


Subject(s)
Spermidine , Spermine , Animals , Adult , Humans , Spermidine/analysis , Spermine/analysis , Putrescine/metabolism , Chromatography, Liquid , Saliva/chemistry , Tandem Mass Spectrometry , Polyamines/metabolism , Plasma/chemistry , Dietary Supplements/analysis , Mammals/metabolism
6.
Food Res Int ; 168: 112705, 2023 06.
Article in English | MEDLINE | ID: mdl-37120188

ABSTRACT

Andean potatoes (Solanum tuberosum L. ssp. andigena) are a good source of dietary antioxidant polyphenols. We have previously demonstrated that polyphenol extracts from Andean potato tubers exerted a dose-dependent cytotoxic effect in human neuroblastoma SH-SY5Y cells, being skin extracts more potent than flesh ones. In order to gain insight into the bioactivities of potato phenolics, we investigated the composition and the in vitro cytotoxic activity of total extracts and fractions of skin and flesh tubers of three Andean potato cultivars (Santa María, Waicha, and Moradita). Potato total extracts were subjected to liquid-liquid fractionation using ethyl acetate solvent in organic and aqueous fractions. We analyzed both fractions by HPLC-DAD, HPLC-ESI-MS/MS, and HPLC-HRMS. Results corroborated the expected composition of each fraction. Organic fractions were rich in hydroxycinnamic acids (principally chlorogenic acid isomers), whereas aqueous fractions contained mainly polyamines conjugated with phenolic acids, glycoalkaloids, and flavonoids. Aqueous fractions were cytotoxic against SH-SY5Y cells and even more potent than their respective total extracts. Treatment with a combination of both fractions showed a similar cytotoxic response to the corresponding extract. According to correlation studies, it is tempting to speculate that polyamines and glycoalkaloids are crucial in inducing cell death. Our findings indicate that the activity of Andean potato extracts is a combination of various compounds and contribute to the revalorization of potato as a functional food.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Solanum tuberosum , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Polyamines/metabolism , Polyphenols/metabolism , Solanum tuberosum/metabolism , Tandem Mass Spectrometry , Metabolome
7.
Exp Biol Med (Maywood) ; 248(8): 702-711, 2023 04.
Article in English | MEDLINE | ID: mdl-37012677

ABSTRACT

This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.


Subject(s)
Citrulline , Placenta , Pregnancy , Female , Swine , Animals , Placenta/metabolism , Citrulline/metabolism , Dietary Supplements , Polyamines/metabolism , Guanosine Triphosphate/metabolism , Arginine/metabolism
8.
PLoS One ; 18(3): e0283696, 2023.
Article in English | MEDLINE | ID: mdl-37000792

ABSTRACT

Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.


Subject(s)
Leishmania , Leishmaniasis , Animals , Mice , Putrescine/pharmacology , Putrescine/metabolism , Spermidine/pharmacology , Spermidine/metabolism , Spermine/metabolism , Polyamines/metabolism , Leishmaniasis/drug therapy , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Nitric Oxide Synthase/metabolism , Macrophages/metabolism , Arginine/pharmacology , Arginine/metabolism , Dietary Supplements
9.
Sci Rep ; 13(1): 4329, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922548

ABSTRACT

Honey bee health has been an important and ongoing topic in recent years. Honey bee is also an important model organism for aging studies. Polyamines, putrescine, spermidine and spermine, are ubiquitous polycations, involved in a wide range of cellular processes such as cell growth, gene regulation, immunity, and regulation of lifespan. Spermidine, named longevity elixir, has been most analysed in the context of aging. One of the several proposed mechanisms behind spermidine actions is antioxidative activity. In present study we showed that dietary spermidine supplementation: (a) improved survival, (b) increased the average lifespan, (c) influenced the content of endogenous polyamines by increasing the level of putrescine and spermidine and decreasing the level of spermine, (d) reduced oxidative stress (MDA level), (e) increased the antioxidant capacity of the organism (FRAP), (f) increased relative gene expression of five genes involved in polyamine metabolism, and (g) upregulated vitellogenin gene in honey bees. To our knowledge, this is the first study on honey bee polyamine levels in reference to their longevity. These results provide important information on possible strategies for improving honey bee health by introducing spermidine into their diet. Here, we offer spermidine concentrations that could be considered for that purpose.


Subject(s)
Polyamines , Spermidine , Bees , Animals , Spermidine/pharmacology , Spermidine/metabolism , Polyamines/metabolism , Spermine/pharmacology , Spermine/metabolism , Putrescine/metabolism , Longevity , Dietary Supplements
10.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830711

ABSTRACT

Cells acquire polyamines putrescine (PUT), spermidine (SPD) and spermine (SPM) via the complementary actions of polyamine uptake and synthesis pathways. The endosomal P5B-type ATPases ATP13A2 and ATP13A3 emerge as major determinants of mammalian polyamine uptake. Our biochemical evidence shows that fluorescently labeled polyamines are genuine substrates of ATP13A2. They can be used to measure polyamine uptake in ATP13A2- and ATP13A3-dependent cell models resembling radiolabeled polyamine uptake. We further report that ATP13A3 enables faster and stronger cellular polyamine uptake than does ATP13A2. We also compared the uptake of new green fluorescent PUT, SPD and SPM analogs using different coupling strategies (amide, triazole or isothiocyanate) and fluorophores (symmetrical BODIPY, BODIPY-FL and FITC). ATP13A2 promotes the uptake of various SPD and SPM analogs, whereas ATP13A3 mainly stimulates the uptake of PUT and SPD conjugates. However, the polyamine linker and coupling position on the fluorophore impacts the transport capacity, whereas replacing the fluorophore affects polyamine selectivity. The highest uptake in ATP13A2 or ATP13A3 cells is observed with BODIPY-FL-amide conjugated to SPD, whereas BODIPY-PUT analogs are specifically taken up via ATP13A3. We found that P5B-type ATPase isoforms transport fluorescently labeled polyamine analogs with a distinct structure-activity relationship (SAR), suggesting that isoform-specific polyamine probes can be designed.


Subject(s)
Polyamines , Spermidine , Animals , Polyamines/metabolism , Spermidine/metabolism , Boron Compounds , Spermine/metabolism , Putrescine/metabolism , Biological Transport , Mammals/metabolism , Fluorescent Dyes , Adenosine Triphosphatases/metabolism
11.
Nutrients ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36297003

ABSTRACT

The polyamine spermidine is discussed as a caloric restriction mimetic and therapeutic option for obesity and related comorbidities. This study tested oral spermidine supplementation with regard to the systemic, hepatic and pulmonary lipid metabolism under different diet conditions. Male C57BL/6 mice were fed a purified control (CD), high sucrose (HSD) or high fat (HFD) diet with (-S) or without spermidine for 30 weeks. In CD-fed mice, spermidine decreased body and adipose tissue weights and reduced hepatic lipid content. The HSD induced hepatic lipid synthesis and accumulation and hypercholesterolemia. This was not affected by spermidine supplementation, but body weight and blood glucose were lower in HSD-S compared to HSD. HFD-fed mice showed higher body and fat depot weights, prediabetes, hypercholesterolemia and severe liver steatosis, which were not altered by spermidine. Within the liver, spermidine diminished hepatic expression of lipogenic transcription factors SREBF1 and 2 under HSD and HFD and affected the expression of other lipid-related enzymes. In contrast, diet and spermidine exerted only minor effects on pulmonary parameters. Thus, oral spermidine supplementation affects lipid metabolism in a diet-dependent manner, with significant reductions in body fat and weight under physiological nutrition and positive effects on weight and blood glucose under high sucrose intake, but no impact on dietary fat-related parameters.


Subject(s)
Hypercholesterolemia , Metabolic Diseases , Male , Mice , Animals , Mice, Obese , Lipid Metabolism , Spermidine/pharmacology , Diet, High-Fat/adverse effects , Blood Glucose/metabolism , Polyamines/metabolism , Hypercholesterolemia/metabolism , Mice, Inbred C57BL , Liver/metabolism , Dietary Fats/metabolism , Metabolic Diseases/metabolism , Dietary Supplements , Sucrose/pharmacology , Transcription Factors/metabolism
12.
J Agric Food Chem ; 70(38): 11880-11891, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106904

ABSTRACT

Polyamine oxidase (PAO) is a key enzyme maintaining polyamine homeostasis, which affects plant physiological activities. Until now, the gene members and function of PAOs in tea (Camellia sinenesis) have not been fully identified. Here, through the expression in Escherichia coli and Nicotiana benthamiana, we identified six genes annotated as CsPAO in tea genome and transcriptome and determined their enzyme reaction modes and gene expression profiles in tea cultivar 'Yinghong 9'. We found that CsPAO1,2,3 could catalyze spermine, thermospermine, and norspermidine, and CsPAO2,3 could catalyze spermidine in the back-conversion mode, which indicated that the precursor of γ-aminobutyric acid might originate from the oxidation of putrescin but not spermidine. We further investigated the changes of CsPAO activity with temperature and pH and their stability. Kinetic parameters suggested that CsPAO2 was the major PAO modifying polyamine composition in tea, and it could be inactivated by ß-hydroxyethylhydrazine and aminoguanidine. Putrescine content and CsPAO2 expression were high in tea flowers. CsPAO2 responded to wound, drought, and salt stress; CsPAO1 might be the main member responding to cold stress; anoxia induced CsPAO3. We conclude that in terms of phylogenetic tree, enzyme characteristics, and expression profile, CsPAO2 might be the dominant CsPAO in the polyamine degradation pathway.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Gene Expression Regulation, Plant , Oxidoreductases Acting on CH-NH Group Donors , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Polyamines/metabolism , Putrescine , Spermine/metabolism , Tea , gamma-Aminobutyric Acid/metabolism , Polyamine Oxidase
13.
Nature ; 609(7926): 348-353, 2022 09.
Article in English | MEDLINE | ID: mdl-35978195

ABSTRACT

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , Macrophages , Nitric Oxide Synthase Type II , Animals , Arthritis/immunology , Arthritis/metabolism , Citrulline/metabolism , Cyanates/metabolism , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Ornithine/metabolism , Ornithine Decarboxylase/metabolism , Polyamines/metabolism , Salmonella typhimurium/immunology
14.
Cells ; 11(15)2022 07 22.
Article in English | MEDLINE | ID: mdl-35892565

ABSTRACT

Magnesium ions (Mg2+) have favorable effects such as the improvement of barrier function and the reduction of inflammation reaction in inflammatory skin diseases. However, its mechanisms have not been fully understood. Microarray analysis has shown that the gene expressions of polyamine synthases are upregulated by MgCl2 supplementation in human HaCaT keratinocytes. Here, we investigated the mechanism and function of polyamine production. The mRNA and protein levels of polyamine synthases were dose-dependently increased by MgCl2 supplementation, which were inhibited by U0126, a MEK inhibitor; CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor; and Naphthol AS-E, a cyclic AMP-response-element-binding protein (CREB) inhibitor. Similarly, reporter activities of polyamine synthases were suppressed by these inhibitors, suggesting that MEK, GSK3, and CREB are involved in the transcriptional regulation of polyamine synthases. Cell viability was reduced by ultraviolet B (UVB) exposure, which was rescued by MgCl2 supplementation. The UVB-induced elevation of reactive oxygen species was attenuated by MgCl2 supplementation, which was inhibited by cysteamine, a polyamine synthase inhibitor. Our data indicate that the expression levels of polyamine synthases are upregulated by MgCl2 supplementation mediated through the activation of the MEK/GSK3/CREB pathway. MgCl2 supplementation may be useful in reducing the UVB-induced oxidative stress in the skin.


Subject(s)
Magnesium , Ultraviolet Rays , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Dietary Supplements , Glycogen Synthase Kinase 3/metabolism , Humans , Keratinocytes/metabolism , Magnesium/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Polyamines/metabolism
15.
Plant Physiol Biochem ; 183: 128-137, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35588560

ABSTRACT

Polyamines (PAs) are natural active compounds having more than two amino groups that play important roles in many physiological and developmental processes in plants. The purpose of this research was to see how foliar polyamine spray affected growth and photosynthetic indices, as well as secondary metabolites and antioxidant activity of the aqueous and methanolic extracts of pot marigold (Calendula officinalis L.). The experiment lasted for three months and was arranged in a randomized complete design with four replications. Three separate concentrations (0.5, 1 and 2.5 mM) of spermine (SPM), spermidine (SPD), and putrescine (PUT) were sprayed at four/five fully expanded leaf stage and some physiochemical attributes were evaluated. The treatments caused a significant increase in morphological and photosynthetic parameters and total oil. There were also significant variations in total phenolic and flavonoid content. Compared to other polyamines, 1 mM SPD foliar spraying showed the greatest effect. Furthermore, the highest antioxidant capacity (DPPH* scavenging assay, ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC) and ß-carotene bleaching activity) was observed in the 1 mM SPD treatment. The results showed that the calendula essential oils (EOs) were rich in sesquiterpenes hydrocarbons (55.92-95.94%), with c-Cadinene and d-Cadinene as the major sesquiterpenes in the EOs. Also, the flowers were rich sources of carotenoids (lutein, flavoxanthin and luteoxanthin) following polyamines application. Hence, it can be inferred that polyamines specially spermidine would find a wide range of application in pharmaceutical industries due to its impact on antioxidant properties of phenolic and flavonoid compounds.


Subject(s)
Calendula , Antioxidants/metabolism , Calendula/chemistry , Calendula/metabolism , Flavonoids , Phenols , Phytochemicals/pharmacology , Plant Oils , Polyamines/metabolism , Polyamines/pharmacology , Spermidine/metabolism , Spermidine/pharmacology
16.
J Exp Bot ; 73(16): 5581-5595, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35608836

ABSTRACT

The ornithine-urea cycle (urea cycle) makes a significant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine. Arginine decarboxylase activity was decreased in roots, suggesting that the ornithine decarboxylase-dependent production of putrescine was important in situations of ammonium stress. The activity of copper amine oxidase, which releases ammonium from putrescine, was significantly decreased in both shoots and roots. In addition, physiological concentrations of ammonium inhibited copper amine oxidase activity in in vitro assays, supporting the conclusion that high ammonium accumulation favors putrescine synthesis. Moreover, early supplementation of plants with putrescine avoided ammonium toxicity. The levels of transcripts encoding urea-cycle-related proteins were increased and transcripts involved in polyamine catabolism were decreased under high ammonium concentrations. We conclude that the urea cycle and associated polyamine metabolism function as important protective mechanisms limiting ammonium toxicity in M. truncatula. These findings demonstrate the relevance of the urea cycle to polyamine metabolism in higher plants.


Subject(s)
Amine Oxidase (Copper-Containing) , Ammonium Compounds , Medicago truncatula , Medicago truncatula/genetics , Medicago truncatula/metabolism , Ornithine , Polyamines/metabolism , Putrescine/metabolism , Spermidine/metabolism , Urea
17.
Amino Acids ; 54(8): 1135-1154, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35286462

ABSTRACT

GnRH-I and GnIH are the key neuropeptides that regulate the hypothalamic-pituitary-gonadal axis in mammals during aging. Polyamines are important aliphatic amines that are expressed in the brain and show variation with aging. The present study demonstrates evidence of variation in the level of expression of polyamines, GnRH-I and GnIH in the hypothalamus of female mice during aging. The study also suggests regulatory effects of polyamines over expression of the hypothalamic GnRH-I. The study shows a significant positive correlation between polyamines, its associated factors and GnRH-I along with significant negative correlation between polyamines, its associated factors and GnIH. This is the first study to report the effect of polyamines along with lactate or TNF-α or both on GnRH-I expression in GT1-7 cell line. TNF-α and lactate significantly decreased hypothalamic GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Polyamines (putrescine and agmatine) in contrast, significantly increased GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Also, polyamines increased GnRH-I mRNA expression when treated in presence of TNF-α or lactate thereby suggesting its neuro-protective role. This study also found 3809 differentially expressed genes through RNA-seq done between the hypothalamic GT1-7 cells treated with putrescine only versus TNF-α and putrescine. The present study suggests for the first time that putrescine treatment to TNFα-primed GT1-7 cells upregulates GnRH-I expression via regulation of several pathways such as calcium ion pathway, estrogen signaling, clock genes as well as regulating other metabolic process like neuronal differentiation and neurulation.


Subject(s)
Polyamines , Putrescine , Aging , Animals , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Lactates/metabolism , Mice , Polyamines/metabolism , Putrescine/metabolism , RNA, Messenger/metabolism , Rodentia/genetics , Rodentia/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Biol Reprod ; 106(5): 865-878, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35098299

ABSTRACT

Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate the expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75-mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8-15, and twice daily intrauterine injections (25 µg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11-15, resulting in four treatment groups: (i) P4 + CX; (ii) P4 + IFNT; (iii) RU486 + P4 + CX; or (iv) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate the expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.


Subject(s)
Agmatine , Interferon Type I , Agmatine/metabolism , Agmatine/pharmacology , Animals , Corn Oil/metabolism , Endometrium/metabolism , Female , Interferon Type I/metabolism , Mifepristone , Polyamines/metabolism , Pregnancy , Pregnancy Proteins , Progesterone/metabolism , Proteins/metabolism , Putrescine , RNA, Messenger/metabolism , Sheep , Sheep, Domestic , Uterus/metabolism
19.
Amino Acids ; 54(2): 193-204, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34741684

ABSTRACT

Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental  mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.


Subject(s)
Angiogenic Proteins , Placenta , Angiogenic Proteins/metabolism , Animals , Arginine/metabolism , Arginine/pharmacology , Dietary Supplements , Endothelial Cells/metabolism , Female , Placenta/metabolism , Placenta Growth Factor/metabolism , Polyamines/metabolism , Pregnancy , Sus scrofa/metabolism , Swine , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
Microbiology (Reading) ; 167(12)2021 12.
Article in English | MEDLINE | ID: mdl-34910617

ABSTRACT

Polyamines constitute a group of organic polycations positively charged at physiological pH. They are involved in a large variety of biological processes, including the protection against physiological stress. In this study, we show that the genome of Streptococcus agalactiae, a commensal bacterium of the intestine and the vagina and one of the most common agents responsible of neonate infections, does not encode proteins homologous to the specific enzymes involved in the known polyamine synthetic pathways. This lack of biosynthetic capability was verified experimentally by TLC analysis of the intracellular content of S. agalactiae grown in the absence of polyamines. However, similar analyses showed that the polyamines spermidine, spermine and putrescine can be imported from the growth media into the bacteria. We found that all strains of S. agalactiae possess the genes encoding the polyamine ABC transporter PotABCD. We demonstrated that these genes form an operon with folK, a gene involved in folate biosynthesis, murB, a gene involved in peptidoglycan biosynthesis, and with clc, a gene encoding a Cl-/H+ antiporter involved in resistance to acid stress in Escherichia coli. Transcription of the potABCD operon is induced by peroxide-induced oxidative stress but not by acidic stress. Spermidine and spermine were found to be inducers of potABCD transcription at pH 7.4 whereas putrescine induces this expression only during peroxide-induced oxidative stress. Using a deletion mutant of potABCD, we were nevertheless unable to associate phenotypic traits to the PotABCD transporter, probably due to the existence of one or more as yet identified transporters with a redundant action.


Subject(s)
Polyamines , Streptococcus agalactiae , Biological Transport , Humans , Infant, Newborn , Membrane Transport Proteins/genetics , Polyamines/metabolism , Putrescine/metabolism , Spermidine/metabolism , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL