Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Drug Chem Toxicol ; 47(2): 243-251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38303124

ABSTRACT

Prolonged use of Highly Active Antiretroviral Therapy (HAART) has been linked to toxicity, particularly hepatotoxicity. There are few effective drugs for HAART patients that promote hepatic cell regeneration and prevent liver injury. Therefore, the purpose of this study was to investigate the hepato-protective activity of Methanol fruit extract of Punica granatum (MFEPG) in HAART-administered rats. Thirty rats weighing between 150-200 g were randomly divided into six groups and each group comprised of five rats. Distilled water was given to the rats in group one. Only HAART was given to the rats in group two. MFEPG at doses of 100 and 400 mg/kg was given to the rats in groups three and four. MFEPG dosages of 100 and 400 mg/kg along with HAART were given to the rats in groups five and six, respectively. All treatments were via oral gavage daily for 40 days. Under halothane anesthesia, all rats were sacrificed on day 41. Liver tissues were utilized for lipid peroxidation marker; Malondialdehyde (MDA), antioxidant enzymes; Superoxide dismutase (SOD) and Catalase (CAT) and histological evaluation, while blood samples were examined for biochemical parameters (AST, ALT, ALP, Total cholesterol, Total protein, and Albumin). The HAART-treated group exhibited a significantly higher amount of the lipid peroxidation end product; MDA, and significantly lower levels of antioxidant enzymes; SOD, and CAT. Liver enzymes and total cholesterol were significantly increased with a significant reduction in Total protein and Albumin levels in the HAART-treated group. Conversely, the liver function biomarkers were returned to normal levels in the HAART and MFEPG-treated groups. Histopathological studies revealed that when HAART-exposed rats were treated with MFEPG, both the biochemical and histological results significantly improved. Thus, the antioxidant activity of MFEPG provides protection against HAART-induced liver oxidative damage. More research is needed to determine the safety of using MFEPG in humans.


Subject(s)
Antioxidants , Pomegranate , Humans , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , Pomegranate/metabolism , Antiretroviral Therapy, Highly Active , Methanol , Fruit , Plant Extracts/therapeutic use , Liver , Superoxide Dismutase/metabolism , Lipid Peroxidation , Albumins/metabolism , Albumins/pharmacology , Cholesterol/metabolism , Cholesterol/pharmacology
2.
Nat Prod Res ; 38(5): 727-734, 2024.
Article in English | MEDLINE | ID: mdl-37029619

ABSTRACT

Pomegranate is an important source of bioactive molecules with proven beneficial effects on human health. The aim of this study was to investigate the potential anti-inflammatory effect of a pomegranate extract (PE), obtained from the whole fruit and previously characterized by Reversed Phase-Ultra High-Pressure Liquid Chromatography-High Resolution Mass Spectrometry (RP-UHPLC-HRMS), on HepG2 human hepatocellular carcinoma cells challenged with the lipopolysaccharide (LPS). In LPS-treated cells (1 µg/ml, 24h), the PE treatment (administered at the non-cytotoxic dose of 1 µg/ml, 24h) induced a significant reduction of three key pro-inflammatory cytokines, i.e. interleukin-8 (IL-8), interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α), at both gene expression (as assayed by real-time PCR) and secretion levels (by Enzyme-linked Immunosorbent Assay, ELISA). Although further in vivo studies are needed to prove its efficacy, this preliminary in vitro study suggests that the PE might be useful for ameliorating liver inflammation.


Subject(s)
Lipopolysaccharides , Pomegranate , Humans , Lipopolysaccharides/pharmacology , Pomegranate/metabolism , Anti-Inflammatory Agents/chemistry , Hep G2 Cells , Macrophages , Cytokines/metabolism , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism
3.
Biophys Chem ; 304: 107130, 2024 01.
Article in English | MEDLINE | ID: mdl-37952497

ABSTRACT

Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and ß-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone ß-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and ß-cell stress in T2DM.


Subject(s)
Amyloidosis , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Pomegranate , Sideritis , Humans , Rats , Animals , Islet Amyloid Polypeptide/chemistry , Diabetes Mellitus, Type 2/metabolism , Sideritis/metabolism , Pomegranate/metabolism , Amyloidosis/metabolism , Plant Extracts/pharmacology
4.
Open Vet J ; 13(10): 1268-1276, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38027401

ABSTRACT

Background: Pomegranate granatum (molasses and peels) and its constituents showed protective effects against natural toxins such as phenylhydrazine (PHZ) as well as chemical toxicants such as arsenic, diazinon, and carbon tetrachloride. Aim: The current study aimed to assess the effect of pomegranate molasses (PM), white peel extract, and red peel extract on nephrotoxicity induced by PHZ. Methods: 80 male rats were divided into eight equal groups; a control group, PM pure group, white peel pomegranate pure group, red peel pomegranate pure group, PHZ group, PM + PHZ group, white peel pomegranate + PHZ group and red peel pomegranate + PHZ group. Kidney function, inflammation markers, antioxidant activities, and renal tissue histopathology were investigated. Results: The results revealed that PHZ group showed a significant increase in lactate Dehydrogenase (LDH), malondialdehyde (MDA), creatinine, uric acid, BUNBUN, C - reactive protein (CRP), tumor necrosis factor, thiobarbituric acid reactive substances (TBARSs), and total antioxidant capacity (TAC) with a significant decrease of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as compared with a control group. Other pomegranate-treated and PHZ co-treated groups with pomegranate showed a significant decrease of LDH, MDA, creatinine, uric acid, BUN, tumor necrosis factor, TBARSs, and TAC with a significant increase of CAT, GPx, and SOD as compared with PHZ group. Conclusion: Collectively, our data suggest that red, white peels, and molasses have anti-toxic and anti-inflammatory effects on renal function and tissues.


Subject(s)
Antioxidants , Pomegranate , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Antioxidants/metabolism , Pomegranate/metabolism , Fruit/chemistry , Fruit/metabolism , Uric Acid/analysis , Uric Acid/metabolism , Creatinine/analysis , Creatinine/metabolism , Plant Extracts/pharmacology , Kidney/metabolism , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism , Tumor Necrosis Factors/analysis , Tumor Necrosis Factors/metabolism , Phenylhydrazines/analysis , Phenylhydrazines/metabolism
5.
Inflammopharmacology ; 31(5): 2283-2301, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507609

ABSTRACT

BACKGROUND: Several studies have shown the effects of pomegranate on oxidative stress and inflammation biomarkers, while some studies showed no effects of pomegranate on these biomarkers. Therefore, we aimed to evaluate the effects of pomegranate consumption on C-reactive protein (CRP), interlukin-6 (IL-6), tumor necrosis factor α (TNF-α), total antioxidant capacity (TAC), and malondialdehyde (MDA) in adults. METHODS: A systematic literature search was performed using databases, including PubMed, Web of Science, and Scopus, up to May 2023 to identify eligible randomized controlled trials (RCTs). Heterogeneity tests of the included trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. RESULTS: Of 3811 records, 33 eligible RCTs were included in the current study. Our meta-analysis of the pooled findings showed that pomegranate consumption significantly reduced CRP (WMD: -0.50 mg/l; 95% CI -0.79 to -0.20; p = 0.001), IL-6 (WMD: -1.24 ng/L 95% CI -1.95 to -0.54; p = 0.001), TNF-α (WMD: -1.96 pg/ml 95%CI -2.75 to -1.18; p < 0.001), and MDA (WMD: -0.34 nmol/ml 95%CI -0.42 to -0.25; p < 0.001). Pooled analysis of 13 trials revealed that pomegranate consumption led to a significant increase in TAC (WMD: 0.26 mmol/L 95%CI 0.03 to 0.49; p = 0.025). CONCLUSION: Overall, the results demonstrated that pomegranate consumption has beneficial effects on oxidative stress and inflammatory biomarkers in adults. Therefore, pomegranate can be consumed as an effective dietary approach to attenuate oxidative stress and inflammation in patients with cardiovascular diseases. PROSPERO REGISTRATION CODE: CRD42023406684.


Subject(s)
Pomegranate , Adult , Humans , Pomegranate/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Biomarkers/metabolism , C-Reactive Protein/metabolism , Inflammation/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Dietary Supplements
6.
Environ Sci Pollut Res Int ; 30(33): 80817-80827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37306878

ABSTRACT

In this work, pomegranate peel extracts were used as the green reducing agent to synthesize Cu/Fe nanoparticles (P-Cu/Fe nanoparticles) and removed tetrabromobisphenol A (TBBPA) in aqueous solution. P-Cu/Fe nanoparticles were amorphous and irregularly spherical. The surfaces of nanoparticles contained Fe0, Fe3+ oxides (hydroxides), and Cu0. The bioactive molecules from pomegranate peel were extremely important for the synthesis of nanoparticles. P-Cu/Fe nanoparticles had excellent removal performance for TBBPA, and 98.6% of TBBPA (5 mg L-1) was removed within 60 min. The removal reaction of TBBPA by P-Cu/Fe nanoparticles was well-fitted with the pseudo-first-order kinetic model. The Cu loading was critical for TBBPA removal with an optimum value of 1.0 wt%. A weakly acidic condition (pH 5) was more favorable for the removal of TBBPA. The removal efficiency of TBBPA increased with the rise of temperature and decreased with increasing initial TBBPA concentration. The activation energy (Ea) was 54.09 kJ mol-1, indicating that the removal of TBBPA by P-Cu/Fe nanoparticles was mainly surface-controlled. Reductive degradation was the main mechanism of TBBPA removal by P-Cu/Fe nanoparticles. In conclusion, green synthesized P-Cu/Fe nanoparticles using pomegranate peel waste show great potential for the remediation of TBBPA in aqueous solution.


Subject(s)
Nanoparticles , Polybrominated Biphenyls , Pomegranate , Pomegranate/metabolism , Polybrominated Biphenyls/chemistry , Water , Plant Extracts
7.
BMC Complement Med Ther ; 23(1): 181, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268940

ABSTRACT

BACKGROUND: Although chronic wounds are devastating and can cause burden at multiple levels, chronic wound research is still far behind. Chronic wound treatment is often less efficient due to delay in diagnosis and treatment, non-specific treatment mainly due to lack of knowledge of wound healing or healing resistance genes. It's known that chronic wounds do not progress towards healing, because it gets stalled in inflammatory phase of wound healing. OBJECTIVE: We aimed to use phytoextracts possessing excellent anti-inflammatory properties to regulate the unbalanced levels of cytokines responsible for increased inflammation. METHODS: Evaluation of anti-inflammatory activity of selected phytoextracts namely, Camellia sinensis (L.) Kuntze, Acacia catechu (L.f) Willd., Curcuma longa (L.), Allium sativum (L.), Punica granatum (L.) and Azadirachta indica A. hereafter, called as catechin, epicatechin, curcumin, garlic, pomegranate and neem extracts, respectively in Acute wound fibroblasts (AWFs) and Chronic wound fibroblasts (CWFs) using flow cytometry. RESULTS: The phytoextracts exhibited no cytotoxicity below 100 µg/ml on normal Human Dermal fibroblasts (HDFs), while garlic extract showed highest cell viability followed by catechin, epicatechin, curcumin, pomegranate peel and neem based on IC50 value. Garlic, catechin and epicatechin extracts showed highest anti-inflammatory activities for both TGF-ß and TNF-α in both AWFs and CWFs treated cells. After treatment of AWFs with catechin, epicatechin and garlic extracts, TGF-ß and TNF-α expression was significantly reduced compared to untreated AWFs and reached to almost normal HDFs level. Also, after treatment of CWFs with catechin, epicatechin and garlic extracts, TGF-ß and TNF-α expression was significantly reduced compared to untreated CWFs and was lesser than untreated AWFs. CONCLUSION: The present findings reveal the potential of catechin, epicatechin and garlic extracts for the treatment of acute and chronic wounds with excellent anti-inflammatory properties.


Subject(s)
Catechin , Curcumin , Garlic , Pomegranate , Humans , Tumor Necrosis Factor-alpha/metabolism , Garlic/metabolism , Catechin/pharmacology , Transforming Growth Factor beta/metabolism , Curcumin/pharmacology , Pomegranate/metabolism , Anti-Inflammatory Agents/pharmacology , Fibroblasts/metabolism , Antioxidants/metabolism
8.
Complement Ther Med ; 75: 102958, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271189

ABSTRACT

BACKGROUND: This study aimed to evaluate the effect of pomegranate juice intake on the inflammatory status and complete blood count in hospitalized Covid-19 patients. METHODS: This randomized, double-blinded placebo-controlled trial included 48 patients with two parallel arms. In addition to the standard care provided at the hospital, the patients consumed 500 mL of whole pomegranate juice (PJ) daily or a placebo for 14 days. Inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR)) and complete blood count were determined at baseline and after the 14 days of intervention. RESULTS: At the end of the intervention, a significant decreased was observed in primary outcomes [mean difference (95 %CI)] including IL-6 [5.24(0.87-9.61)], CRP [23.19(11.93-34.44)] and ESR [10.52(1.54-19.50)] in the PJ group vs. before the intervention. In addition, significant changes were also observed in the some of the secondary outcomes, including neutrophils, lymphocytes, platelets, platelets-to-lymphocyte(PLR) and neutrophils-to-lymphocyte (NLR) ratios (p < 0.05) in the PJ group compared to before the intervention. At the end of the intervention period, the mean change of IL-6 [- 7.09(-12.21 to - 1.96)], white blood cells [- 3.09(- 6.14 to - 0.05)], neutrophils [- 9.12(-18.08 to -0.15)], lymphocyte [7.05(0.17-13.92)], platelets [- 94.54(- 139.33 to - 49.75)], PLR [- 15.99(- 29.31 to - 2.67)], blood oxygen saturation [1.75(0.13-3.37)] and MCV [0.31(- 0.25 to 0.88)] levels were significantly different between groups while no difference was observed between the two groups in other blood indices. CONCLUSION: Our results suggest that pomegranate juice intake might slightly improve the inflammatory status and CBC outcomes of COVID-19 patients and it may be beneficial.


Subject(s)
COVID-19 , Pomegranate , Humans , Pomegranate/metabolism , Interleukin-6 , C-Reactive Protein/metabolism , Lymphocytes/metabolism , Adjuvants, Immunologic
9.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675252

ABSTRACT

The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.


Subject(s)
Atherosclerosis , Linoleic Acids, Conjugated , Plaque, Atherosclerotic , Pomegranate , Mice , Animals , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/metabolism , Pomegranate/metabolism , Lipid Metabolism , Linolenic Acids/pharmacology , Linolenic Acids/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Plant Oils/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Linoleic Acids, Conjugated/pharmacology , Linoleic Acids, Conjugated/metabolism
10.
Integr Cancer Ther ; 22: 15347354221151021, 2023.
Article in English | MEDLINE | ID: mdl-36710483

ABSTRACT

Tumor resistance is typically blamed for the failure of radiotherapy and chemotherapy to treat cancer in clinic patients. To improve the cytotoxicity of tumor cells using radiation in conjunction with specific tumor-selective cytotoxic drugs is crucial. Pomegranate has received overwhelmingly positive feedback as a highly nutritious food for enhancing health and treating a variety of ailments. In the present study, we aimed to examine the effects as well as mechanism of action of pomegranate peel extract (PPE) and/or γ-radiation (6-Gy) on hepatocellular carcinoma (HCC) cell lines HepG2. The findings of this study showed that PPE treatment of HepG2 cells considerably slowed the proliferation of cancer cells, and its combination with γ-irradiation potentiated this action. As a key player in tumor proliferation, and inflammatory cascade induction, the down-regulation of STAT3 following treatment of irradiated and non-irradiated HepG2 cells with PPE as recorded in the present work resulted in reduction of tumor growth, via modulating inflammatory response manifested by (down-regulation of TLR4 expression and NFKB level), suppressing survival markers expressed by reduction of JAK, NOTCH1, ß-catenin, SOCS3, and enhancing apoptosis (induction of tumor PPAR-γ and caspase-3) followed by changes in redox tone (expressed by increase in Nrf-2, SOD and catalase activities, and decrease in MDA concentration). In conclusion, PPE might possess a considerable therapeutic potential against HCC in addition to its capability to enhance response of HepG2 cells to gamma radiation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Pomegranate , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Pomegranate/metabolism , beta Catenin/metabolism , Apoptosis , Cell Line, Tumor , Radiation, Ionizing , Cell Proliferation , Suppressor of Cytokine Signaling 3 Protein/metabolism , STAT3 Transcription Factor/metabolism
11.
Rapid Commun Mass Spectrom ; 37 Suppl 1: e9482, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36718938

ABSTRACT

Pomegranate seeds are a potential source of bioactive compounds. Nonetheless, most pomegranate seeds are discarded in the food processing industry, likely due to the lack of convincing data on their component analysis. METHODS: To reveal the main chemical constituents of pomegranate seeds, a reliable and sensitive method based on ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (MS) was developed. A time-dependent MSE data acquisition mode was applied to acquire the mass spectrometric data. The chemical constituents were identified by an automatic retrieval of a traditional Chinese medicine library and relevant literature. RESULTS: A total number of 59 compounds, including fatty acids, sterols, vitamins, cerebrosides, phospholipids, flavonoids, phenylpropanoids, and others, were tentatively identified. Their possible fragmentation pathways and characteristic ions were proposed and elucidated. CONCLUSIONS: The findings of this study, along with the developed methodology, could provide a reference for basic research on the pharmacodynamic substances of pomegranate seeds and shed light on their potential nutritional and therapeutic applications in the future.


Subject(s)
Chromatography, Supercritical Fluid , Drugs, Chinese Herbal , Pomegranate , Spectrometry, Mass, Electrospray Ionization/methods , Pomegranate/metabolism , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Seeds/chemistry
12.
J Sci Food Agric ; 103(6): 2914-2925, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36507778

ABSTRACT

BACKGROUND: Husk scald (HS) is a physiological disorder limiting the marketability of pomegranate fruit during long-term storage. Herein we propose that HS is triggered by water loss and mediated by ABA signaling. Therefore, pomegranate fruit were stored at three different storage temperatures (3.5, 7 and 11°C) and 96.5% ± 2.3% relative humidity (RH) evaluating weight loss (WL), abscisic acid (ABA), respiration rate (RR), total phenolics (TP), total anthocyanin (TA), antioxidant activity (AA), exocarp electrolyte leakage (EL), malondialdehyde (MDA), color attributes, browning index and visual quality of fruit. RESULTS: HS appeared after 3 months of storage at 11 °C, less at 7°C and non-present at 3.5°C. Incidence of HS occurred along with higher WL, RR, EL, MDA, and ABA content. Conversely, TP, TA and AA decreased significantly. WL increased with water vapor pressure deficit (VPD) at higher temperatures. After 93 days, 11 °C fruit reached ~10% WL while ABA increased to ~150 µg kg-1 . However, 3.5 and 7 °C fruit, reached 5 and 7% WL while ABA was ~31 and 75 µg kg-1 , respectively. CONCLUSION: Herein, we propose a mechanistic model of HS development where water stress induces ABA as a primary signaling molecule that triggers the HS response mediated by reactive oxygen species (ROS). Accumulation of ROS induces phenolic biosynthesis and oxidative stress promotes loss of membrane compartmentalization that induces phenolic degradation. Ultimately, husk scalding becomes visible due to the oxidation of phenolics into brown pigments. © 2022 Society of Chemical Industry.


Subject(s)
Antioxidants , Pomegranate , Reactive Oxygen Species/metabolism , Antioxidants/analysis , Pomegranate/metabolism , Plant Extracts/analysis , Fruit/chemistry , Abscisic Acid/metabolism
13.
Environ Sci Pollut Res Int ; 30(6): 16687-16693, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36190633

ABSTRACT

Bioactive natural products are essential components for drug development. Protein glycation in diabetic subjects leads to diabetic complications as nephropathy and neuropathy. We investigated the impact of pomegranate hexane extract (PHE) as antioxidant, anti-inflammatory, and antiglycation in diabetic rats. Gas chromatography/mass spectrum (GC/MS) analysis of PHE revealed presence of resorcinol, catechol, tau-cadinol, metacetamol, scopoletin, phytol, and phenol, 3-pentadecyl as the most active ingredients that related to biological activity. Results obtained showed that, PHE increased serum aldose reductase and total antioxidant activity compared with untreated diabetic rats (p < 0.001). In addition, PHE exert antioxidant by enhancing, catalase and SOD (p < 0.001) and decreased MDA (p < 0.001), anti-inflammatory by inhibition production of 1 ß (IL-1ß), tumor necrosis factor (TNF-α) (p < 0.001), and AGEs (p < 0.001) against nephropathy in diabetic rats compared with untreated group. It was concluded that, pomegranate is promising in development a functional biomolecule in treatment and protection against diabetic complications as nephropathy. More study required to investigate the molecular action of these molecules.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Lythraceae , Pomegranate , Rats , Animals , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/complications , Antioxidants/metabolism , Flavonoids/pharmacology , Pomegranate/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Oxygen , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Complications/drug therapy , Lythraceae/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress
14.
Anat Rec (Hoboken) ; 306(3): 537-551, 2023 03.
Article in English | MEDLINE | ID: mdl-36370004

ABSTRACT

Lithium carbonate (LC) is known to alter thyroid gland function. Pomegranate (PG) is a fruit with multiple antioxidant and antiapoptotic properties. Here, we studied the effect of PG on LC-induced morphological and functional alterations in the thyroid glands of rats. Rats were divided into four groups: control, lithium, lithium-PG, and PG. After 8 weeks, the rats were sacrificed, the levels of thyroid hormones and oxidative stress markers were estimated, and thyroid tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. Compared to the control group, the lithium group showed significant changes in thyroid hormone levels, greater expression of the oxidant marker malondialdehyde, and lower expression of the antioxidant marker superoxide dismutase (SOD). Most of these changes improved upon PG treatment. Histological evaluation of the thyroid in the lithium group showed disorganization and follicle involution. Additionally, the periodic acid Schiff staining intensity and SOD immunoreactivity declined significantly, whereas the collagen fiber content and Bax immunoreactivity increased. The follicular ultrastructure showed marked distortion. These changes were mitigated upon PG treatment. In conclusion, PG alleviated the morphological and functional changes in the thyroid glands induced by LC by modulating apoptosis and oxidative stress.


Subject(s)
Antioxidants , Pomegranate , Rats , Animals , Antioxidants/pharmacology , Thyroid Gland/metabolism , Pomegranate/metabolism , Lithium/metabolism , Lithium/pharmacology , Fruit/metabolism , Rats, Wistar , Oxidative Stress , Apoptosis , Thyroid Hormones/metabolism , Superoxide Dismutase/metabolism , Plant Extracts/pharmacology
15.
Arch Physiol Biochem ; 129(4): 870-878, 2023 Dec.
Article in English | MEDLINE | ID: mdl-33524274

ABSTRACT

This study was conducted to evaluate the anti-diabetic and antioxidant effects of hydroalcoholic pomegranate peel extract (APE) in alloxan-induced diabetes rat models. We divided 60 rats into the following six equal groups (n = 10): Healthy control; diabetic control (100 mg/kg alloxan); sham + glibenclamide (10 mg/kg); diabetic + glibenclamide (10 mg/kg); sham + APE (200 mg/kg) and diabetic + APE (200 mg/kg). After 8 weeks, kidneys were taken out for biochemical and molecular studies. Following APE treatment, biochemical parameters including malondialdehyde (MDA), and glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD) significantly induced in the treated group as compared with the control group (p < 0.05). Also, gene expression of GPx (3-fold), CAT (2.6-fold), and SOD (1.5-fold) were increased as compared to controls (p < 0.05). Overall, our results indicated that pomegranate can be used as an antioxidant agent to reduce complications from diseases associated with oxidative stress.


Subject(s)
Diabetes Mellitus , Hominidae , Pomegranate , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Alloxan/adverse effects , Pomegranate/metabolism , Glyburide/pharmacology , Rats, Wistar , Catalase/genetics , Catalase/metabolism , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Plant Extracts/pharmacology , Gene Expression , Hominidae/metabolism
16.
PeerJ ; 10: e13350, 2022.
Article in English | MEDLINE | ID: mdl-35502204

ABSTRACT

Background: Diarrheal diseases caused by protozoa have a great impact on human health around the world. Giardia lamblia is one of the most common flagellates in the intestinal tract. Factors such as adverse effects to first-line drugs or the appearance of drug-resistant strains, make it necessary to identify new treatment alternatives. Agroindustry waste, like pomegranate peel, are a source of phenolic compounds, which possess antiparasitic activities. In vivo studies demonstrated antigiardiasic potential by reducing cyst shedding and protecting intestinal cells; however, they did not identify the compounds or elucidate any mechanism of action in the parasite. The objective of this study is to identify potential molecular targets and to test the in vitro effects of polyphenols from Punica granatum on Giardia lamblia. Methods: The in vitro antigiardial potential of polyphenolic extract from pomegranate peel (Punica granatum L.) obtained using microwave-ultrasound methodology was evaluated on Giardia lamblia trophozoites. Extract phytochemical identification was performed by HPLC/MS analysis. The effect of polyphenolic extract on growth and adhesion capacity was determined by parasite kinetics; morphological damage was evaluated by SEM, alteration on α-tubulin expression and distribution were analyzed by western blot and immunofluorescence, respectively. Results: The pomegranate peel extract showed the presence of ellagitannins (punicalin and punicalagin, galloyl-dihexahydroxydiphenoyl-hexoside), flavones (luteolin), and ellagic acid, that caused an inhibitory effect on growth and adhesion capacity, particularly on cells treated with 200 µg/mL, where growth inhibition of 74.36%, trophozoite adherence inhibition of 46.8% and IC50 of 179 µg/mL at 48 h were demonstrated. The most important findings were that the extract alters α-tubulin expression and distribution in Giardia trophozoites in a concentration-independent manner. Also, an increase in α-tubulin expression at 200 µg/mL was observed in western blot and diffuse or incomplete immunolabeling pattern, especially in ventral disk. In addition, the extract caused elongation, disturbance of normal shape, irregularities in the membrane, and flagella abnormalities. Discussion: The pomegranate peel extract affects Giardia trophozoites in vitro. The damage is related to the cytoskeleton, due to expression and distribution alterations in α-tubulin, particularly in the ventral disk, a primordial structure for adhesion and pathogenesis. Microtubule impairment could explain morphological changes, and inhibition of adhesion capacity and growth. Besides, this is the first report that suggests that ellagic acid, punicalin, punicalagin and luteolin could be interactioning with the rich-tubulin cytoskeleton of Giardia. Further investigations are needed in order to elucidate the mechanisms of action of the isolated compounds and propose a potential drug alternative for the giardiasis treatment.


Subject(s)
Giardia lamblia , Giardiasis , Pomegranate , Animals , Humans , Pomegranate/metabolism , Trophozoites , Tubulin/metabolism , Ellagic Acid/metabolism , Luteolin/metabolism , Microtubules/metabolism , Cytoskeleton , Giardiasis/drug therapy , Plant Extracts/pharmacology
17.
PeerJ ; 10: e12814, 2022.
Article in English | MEDLINE | ID: mdl-35047243

ABSTRACT

BACKGROUND: Sucrose synthase (SUS, EC 2.4.1.13) is one of the major enzymes of sucrose metabolism in higher plants. It has been associated with C allocation, biomass accumulation, and sink strength. The SUS gene families have been broadly explored and characterized in a number of plants. The pomegranate (Punica granatum) genome is known, however, it lacks a comprehensive study on its SUS genes family. METHODS: PgSUS genes were identified from the pomegranate genome using a genome-wide search method. The PgSUS gene family was comprehensively analyzed by physicochemical properties, evolutionary relationship, gene structure, conserved motifs and domains, protein structure, syntenic relationships, and cis-acting elements using bioinformatics methods. The expression pattern of the PgSUS gene in different organs and fruit development stages were assayed with RNA-seq obtained from the NCBI SRA database as well as real-time quantitative polymerase chain reaction (qPCR). RESULTS: Five pomegranate SUS genes, located on four different chromosomes, were divided into three subgroupsaccording to the classification of other seven species. The PgSUS family was found to be highly conserved during evolution after studying the gene structure, motifs, and domain analysis. Furthermore, the predicted PgSUS proteins showed similar secondary and tertiary structures. Syntenic analysis demonstrated that four PgSUS genes showed syntenic relationships with four species, with the exception of PgSUS2. Predictive promoter analysis indicated that PgSUS genes may be responsive to light, hormone signaling, and stress stimulation. RNA-seq analysis revealed that PgSUS1/3/4 were highly expressed in sink organs, including the root, flower, and fruit, and particularly in the outer seed coats. qPCR analysis showed also that PgSUS1, PgSUS3, and PgSUS4 were remarkably expressed during fruit seed coat development. Our results provide a systematic overview of the PgSUS gene family in pomegranate, developing the framework for further research and use of functional PgSUS genes.


Subject(s)
Flower Essences , Pomegranate , Fruit/genetics , Glucosyltransferases/genetics , Pomegranate/metabolism , Seeds/genetics
18.
PLoS One ; 16(8): e0255831, 2021.
Article in English | MEDLINE | ID: mdl-34375350

ABSTRACT

Immature fruits from Punica granatum L. thinning are a neglected side product of pomegranate production with cumbersome disposal costs for farmers. To explore value potential of immature fruits from pomegranate 'Wonderful' cultivars, the compositional landscapes and antitumorigenic activities of pomegranate extracts from two different stages of maturation were assessed. Cancer cell proliferation and cytotoxicity was quantified in human lung H1299 and colon HCT116 adenocarcinomas by crystal violet staining, MTS assay and caspase-3 activity. High performance liquid chromatography-diode array detector (HPLC/DAD) and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC/ESI-MS) analyses indicate that immature fruits are rich sources of gallotannins and ellagitannins, with the highest amounts contained in immature fruit peels. Biological investigations reveal a robust anticancer activity by those immature P. granatum fruit extracts, which reflected induction of tumor cytotoxicity and cell death mechanisms. Together, present observations suggest P. granatum byproducts from the thinning process may provide unexplored values for virtuous circular economy.


Subject(s)
Plant Extracts/chemistry , Pomegranate/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Humans , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Pomegranate/chemistry , Spectrometry, Mass, Electrospray Ionization
19.
Food Funct ; 12(17): 7897-7908, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34241611

ABSTRACT

This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.


Subject(s)
Fatty Liver/metabolism , Gastrointestinal Microbiome , Linolenic Acids/metabolism , Obesity/metabolism , Plant Oils/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Diet, High-Fat/adverse effects , Fatty Liver/diet therapy , Fatty Liver/etiology , Fatty Liver/microbiology , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Obesity/diet therapy , Obesity/etiology , Obesity/microbiology , Plant Oils/chemistry , Pomegranate/chemistry , Pomegranate/metabolism , Seeds/chemistry , Seeds/metabolism
20.
J Sci Food Agric ; 101(12): 5202-5213, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33608893

ABSTRACT

BACKGROUND: Drought is a very important environmental stressor, which has negative effects on the growth of trees, decreasing their yield. The role of different-sized selenium nanoparticles (Se-NPs) in the mitigation of environmental stresses such as drought in crops has not yet been investigated. RESULTS: Trees treated with Se-NPs displayed higher levels of photosynthetic pigments, a better nutrient status, better physical parameters (especially fruit cracking) and chemical parameters, a higher phenolic content, and higher concentrations of osmolytes, antioxidant enzymes, and abscisic acid than untreated trees under drought stress. Foliar spraying of 10 and 50 nm Se-NPs alleviated many of the deleterious effects of drought in pomegranate leaves and fruits and this was achieved by reducing stress-induced lipid peroxidation and H2 O2 content by enhancing the activity of antioxidant enzymes. Furthermore, the 10 nm Se-NPs treatment produced more noticeable effects than the treatment with 50 nm Se-NPs. CONCLUSION: Results confirm the positive effects of nanoparticle spraying, especially the role of 10 nm Se-NPs in the management of negative effects of drought not only for pomegranates but potentially also for other crops. © 2021 Society of Chemical Industry.


Subject(s)
Plant Leaves/drug effects , Pomegranate/growth & development , Selenium/pharmacology , Abscisic Acid/analysis , Abscisic Acid/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Crop Production , Droughts , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Nanoparticles/chemistry , Photosynthesis , Plant Leaves/growth & development , Plant Leaves/metabolism , Pomegranate/drug effects , Pomegranate/metabolism , Selenium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL