Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 467
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Pharm Biomed Anal ; 245: 116142, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38631070

ABSTRACT

Traditional Chinese Medicine (TCM) is a supremely valuable resource for the development of drug discovery. Few methods are capable of hunting for potential molecule ligands from TCM towards more than one single protein target. In this study, a novel dual-target surface plasmon resonance (SPR) biosensor was developed to perform targeted compound screening of two key proteins involved in the cellular invasion process of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): the spike (S) protein receptor binding domain (RBD) and the angiotensin-converting enzyme 2 (ACE2). The screening and identification of active compounds from six Chinese herbs were conducted taking into consideration the multi-component and multi-target nature of Traditional Chinese Medicine (TCM). Puerarin from Radix Puerariae Lobatae was discovered to exhibit specific binding affinity to both S protein RBD and ACE2. The results highlight the efficiency of the dual-target SPR system in drug screening and provide a novel approach for exploring the targeted mechanisms of active components from Chinese herbs for disease treatment.


Subject(s)
Angiotensin-Converting Enzyme 2 , Drugs, Chinese Herbal , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Ligands , Humans , SARS-CoV-2/drug effects , Protein Binding , Medicine, Chinese Traditional/methods , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , COVID-19/virology , COVID-19 Drug Treatment
2.
PLoS One ; 19(4): e0301086, 2024.
Article in English | MEDLINE | ID: mdl-38662719

ABSTRACT

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Subject(s)
Antiviral Agents , Iridoids , Molecular Docking Simulation , Olea , Plant Extracts , Plant Leaves , Polyphenols , SARS-CoV-2 , Olea/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Plant Leaves/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iridoids/pharmacology , Iridoids/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoid Glucosides/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Computer Simulation , COVID-19 Drug Treatment , Luteolin/pharmacology , Luteolin/chemistry , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , Apigenin/pharmacology , Apigenin/chemistry
3.
Phytomedicine ; 129: 155576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579643

ABSTRACT

BACKGROUND: Nature has perennially served as an infinite reservoir of diverse chemicals with numerous applications benefiting humankind. In recent years, due to the emerging COVID-19 pandemic, there has been a surge in studies on repurposing natural products as anti-SARS-CoV-2 agents, including plant-derived substances. Among all types of natural products, alkaloids remain one of the most important groups with various known medicinal values. The current investigation focuses on Amaryllidaceae alkaloids (AAs) since AAs have drawn significant scientific attention as anti-SARS-CoV-2 agents over the past few years. PURPOSE AND STUDY DESIGN: This study serves as a mini-review, summarizing recent advances in studying the anti-SARS-CoV-2 potency of AAs, covering two aspects: structure-activity relationship and mechanism of action (MOA). METHODS: The study covers the period from 2019 to 2023. The information in this review were retrieved from common databases including Web of Science, ScienceDirect, PubMed and Google scholar. Reported anti-SARS-CoV-2 potency, cytotoxicity and possible biological targets of AAs were summarized and classified into different skeletal subclasses. Then, the structure-activity relationship (SAR) was explored, pinpointing the key pharmacophore-related structural moieties. To study the mechanism of action of anti-SARS-CoV-2 AAs, possible biological targets were discussed. RESULTS: In total, fourteen research articles about anti-SARS-CoV-2 was selected. From the SAR point of view, four skeletal subclasses of AAs (lycorine-, galanthamine-, crinine- and homolycorine-types) appear to be promising for further investigation as anti-SARS-CoV-2 agents despite experimental inconsistencies in determining in vitro half maximal inhibitory effective concentration (EC50). Narciclasine, haemanthamine- and montanine-type skeletons were cytotoxic and devoid of anti-SARS-CoV-2 activity. The lycorine-type scaffold was the most structurally diverse in this study and preliminary structure-activity relationships revealed the crucial role of ring C and substituents on rings A, C and D in its anti-SARS-CoV-2 activity. It also appears that two enantiomeric skeletons (haemanthamine- and crinine-types) displayed opposite activity/toxicity profiles regarding anti-SARS-CoV-2 activity. Pharmacophore-related moieties of the haemanthamine/crinine-type skeletons were the substituents on rings B, C and the dioxymethylene moiety. All galanthamine-type alkaloids in this study were devoid of cytotoxicity and it appears that varying substituents on rings C and D could enhance the anti-SARS-CoV-2 potency. Regarding MOAs, initial experimental results suggested Mpro and RdRp as possible viral targets. Dual functionality between anti-inflammatory activity on host cells and anti-SARS-CoV-2 activity on the SARS-CoV-2 virus of isoquinoline alkaloids, including AAs, were suggested as the possible MOAs to alleviate severe complications in COVID-19 patients. This dual functionality was proposed to be related to the p38 MAPK signaling pathway. CONCLUSION: Overall, Amaryllidaceae alkaloids appear to be promising for further investigation as anti-SARS-CoV-2 agents. The skeletal subclasses holding the premise for further investigation are lycorine-, crinine-, galanthamine- and homolycorine-types.


Subject(s)
Amaryllidaceae Alkaloids , Antiviral Agents , SARS-CoV-2 , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/drug effects , Humans , Structure-Activity Relationship , COVID-19 Drug Treatment , Amaryllidaceae/chemistry
4.
J Hosp Infect ; 147: 83-86, 2024 May.
Article in English | MEDLINE | ID: mdl-38490488

ABSTRACT

BACKGROUND: Respiratory viruses have been reported to infect the salivary glands and the throat, which are potential reservoirs for virus replication and transmission. Therefore, strategies to reduce the amount of infective virus particles in the oral mucous membranes could lower the risk of transmission. METHODS: The viral inactivation capacity of a plant-oil-based oral rinse (Salviathymol®) was evaluated in comparison with chlorhexidine (Chlorhexamed® FORTE) using a quantitative suspension test according to EN 14476. FINDINGS: Salviathymol efficiently inactivated severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), respiratory syncytial virus (RSV) and two influenza strains to undetectable levels. CONCLUSION: Salviathymol has potential as preventive measure to lower transmission of respiratory viruses.


Subject(s)
Mouthwashes , SARS-CoV-2 , Humans , Mouthwashes/pharmacology , SARS-CoV-2/drug effects , Plant Oils/pharmacology , Antiviral Agents/pharmacology , Virus Inactivation/drug effects , Respiratory Syncytial Viruses/drug effects , COVID-19/prevention & control
5.
Curr Top Med Chem ; 24(7): 614-633, 2024.
Article in English | MEDLINE | ID: mdl-38477206

ABSTRACT

COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2/drug effects , COVID-19/virology , Animals
6.
J Nat Med ; 78(3): 784-791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512650

ABSTRACT

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19. We purified the PLpro enzyme and conducted in vitro enzymatic assays using specific substrates. Among the nine crude drugs present in senkyuchachosan, four (Cyperi Rhizoma, Schizonepetae Spica, Menthae Herba, and Camelliae sinensis Folium [CsF]) strongly inhibited PLpro activity. CsF, derived from Camellia sinensis (green tea), contains polyphenols, including catechins and tannins. To confirm that the PLpro inhibitory effects of senkyuchachosan predominantly stem from tannins, the tannins were removed from the decoction using polyvinylpolypyrrolidone (PVPP). The inhibitory effect of senkyuchachosan on PLpro activity was reduced by the removal of PVPP. In addition, the tannin fraction obtained from the CsF extracts showed significant PLpro inhibitory effects. These findings lay the groundwork for the potential development of therapeutic agents that target SARS-CoV-2 infection by intervening in proteolytic cleavage of the virus.


Subject(s)
SARS-CoV-2 , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , COVID-19 Drug Treatment , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Tannins/pharmacology , Medicine, Kampo
7.
Viruses ; 15(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38005857

ABSTRACT

COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.


Subject(s)
Antiviral Agents , Plants, Medicinal , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Amino Acids , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Plants, Medicinal/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Saudi Arabia
8.
Am J Chin Med ; 51(6): 1337-1360, 2023.
Article in English | MEDLINE | ID: mdl-37465964

ABSTRACT

SARS-CoV-2 has posed a threat to the health of people around the world because of its strong transmission and high virulence. Currently, there is no specific medicine for the treatment of COVID-19. However, for a wide variety of medicines used to treat COVID-19, traditional Chinese medicine (TCM) plays a major role. In this paper, the effective treatment of COVID-19 using TCM was consulted first, and several Chinese medicines that were frequently used apart from their huge role in treating it were found. Then, when exploring the active ingredients of these herbs, it was discovered that most of them contained flavonoids. Therefore, the structure and function of the potential active substances of flavonoids, including flavonols, flavonoids, and flavanes, respectively, are discussed in this paper. According to the screening data, these flavonoids can bind to the key proteins of SARS-CoV-2, 3CLpro, PLpro, and RdRp, respectively, or block the interface between the viral spike protein and ACE2 receptor, which could inhibit the proliferation of coronavirus and prevent the virus from entering human cells. Besides, the effects of flavonoids on the human body systems are expounded on in this paper, including the respiratory system, digestive system, and immune system, respectively. Normally, flavonoids boost the body's immune system. However, they can suppress the immune system when over immunized. Ultimately, this study hopes to provide a reference for the clinical drug treatment of COVID-19 patients, and more TCM can be put into the market accordingly, which is expected to promote the development of TCM on the international stage.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Immunomodulation , Medicine, Chinese Traditional , SARS-CoV-2/drug effects
9.
Front Biosci (Landmark Ed) ; 28(1): 8, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36722278

ABSTRACT

BACKGROUND: Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drug design. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst the many disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potential in vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. METHODS: The Mpro inhibition assay was developed by cloning, expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. RESULTS: L-arginine was found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral action against Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C were potential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVID patients. CONCLUSIONS: The findings of the current study are important because they help to identify COVID-19 treatments that are efficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategy for COVID-19 that could be used in conjunction with pharmacological agents.


Subject(s)
Arginine , Ascorbic Acid , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , Arginine/pharmacology , Ascorbic Acid/pharmacology , COVID-19 , Dietary Supplements , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
10.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36647612

ABSTRACT

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Benzylisoquinolines , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Chlorocebus aethiops , COVID-19 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2/drug effects , Vero Cells , Plants, Medicinal/chemistry , Phytochemicals/pharmacology
11.
J Biomol Struct Dyn ; 41(5): 1603-1616, 2023 03.
Article in English | MEDLINE | ID: mdl-36719113

ABSTRACT

COVID-19, a disease caused by the SARS-CoV-2 virus, is responsible for a pandemic since March 2020 and it has no cure. Therefore, herein, different theoretical methods were used to obtain potential candidates from herbal compounds to inhibit the SARS-CoV-2 main protease (Mpro). Initially, the 16 best-scored compounds were selected from a library containing 4066 ligands using virtual screening by molecular docking. Among them, six molecules (physalin B 5,6-epoxide (PHY), methyl amentoflavone (MAM), withaphysalin C (WPC), daphnoline or trilobamine (TRI), cepharanoline (CEP) and tetrandrine (TET)) were selected based on Lipinski's rule and ADMET analysis as criteria. These compounds complexed with the Mpro were submitted to triplicate 100 ns molecular dynamics simulations. RMSD, RMSF, and radius of gyration results show that the overall protein structure is preserved along the simulation time. The average ΔGbinding values, calculated by the MM/PBSA method, were -41.7, -55.8, -45.2, -38.7, -49.3, and -57.9 kcal/mol for the PHY-Mpro, MAM-Mpro, WPC-Mpro, CEP-Mpro, TRI-Mpro, and TET-Mpro complexes, respectively. Pairwise decomposition analyses revealed that the binding pocket is formed by His41-Val42, Met165-Glu166-Leu167, Asp187, and Gln189. The PLS regression model generated by QSPR analysis indicated that non-polar and polar groups with the presence of hydrogen bond acceptors play an important role in the herbal compounds-Mpro interactions. Overall, we found six potential candidates to inhibit the SARS-CoV-2 Mpro and highlighted key residues from the binding pocket that can be used for future drug design. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Phytotherapy , Protease Inhibitors , SARS-CoV-2 , Humans , COVID-19/therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Phytotherapy/methods
12.
Durham; Research Square; 2023. 22 p.
Non-conventional in English | BIGG | ID: biblio-1416163

ABSTRACT

Since the beginning of the COVID-19 pandemic, therapeutic options for treating COVID-19 have been investigated at different stages of clinical manifestations. Considering the particular impact of COVID-19 in the Americas, this document aims to present recommendations for the pharmacological treatment of COVID-19 specific to this population. Fifteen experts, members of the Brazilian Society of Infectious Diseases (SBI) and the Pan-American Association of Infectious Diseases (API) make up the panel responsible for developing this guideline. Questions were formulated regarding prophylaxis and treatment of COVID-19 in outpatient and inpatient settings. The outcomes considered in decision-making were mortality, hospitalisation, need for mechanical ventilation, symptomatic COVID-19 episodes, and adverse events. In addition, a systematic review of randomised controlled trials was conducted. The quality of evidence assessment and guideline development process followed the GRADE system. Nine technologies were evaluated, and ten recommendations were made, including the use of tixagevimab + cilgavimab in the prophylaxis of COVID-19, tixagevimab + cilgavimab, molnupiravir, nirmatrelvir + ritonavir, and remdesivir in the treatment of outpatients, and remdesivir, baricitinib, and tocilizumab in the treatment of hospitalised patients with severe COVID-19. The use of hydroxychloroquine or chloroquine and ivermectin was discouraged. This guideline provides recommendations for treating patients in the Americas following the principles of evidence-based medicine. The recommendations present a set of drugs that have proven effective in the prophylaxis and treatment of COVID-19, emphasising the strong recommendation for the use of nirmatrelvir/ritonavir in outpatients as the lack of benefit from the use of hydroxychloroquine and ivermectin


Subject(s)
Humans , SARS-CoV-2/drug effects , COVID-19/drug therapy , Antiviral Agents/therapeutic use , Chloroquine/therapeutic use , Hydroxychloroquine/therapeutic use , Antibodies, Monoclonal/therapeutic use
13.
Rev. Hosp. Ital. B. Aires (2004) ; 42(4): 231-239, dic. 2022. ilus, tab
Article in Spanish | LILACS, UNISALUD, BINACIS | ID: biblio-1424871

ABSTRACT

INTRODUCCIÓN: Un nuevo brote de coronavirus surgió en 2019 en Wuhan, China, causando conmoción en el sistema sanitario de todo el mundo; el Comité Internacional de Taxonomía de Virus lo denominó SARS-CoV-2, agente causante de la enfermedad COVID-19.El espectro de gravedad de la enfermedad es muy amplio: la mayoría de los pacientes no presentan gravedad, pero otros pueden desarrollar neumonías, y la insuficiencia respiratoria aguda es la causa más frecuente de mortalidad. Objetivo: analizar y desarrollar las distintas alternativas terapéuticas aportadas por la Biotecnología para tratar los síntomas de aquellos pacientes con COVID-19. Metodología: se realizó una revisión de la bibliografía disponible, a partir de enero de 2020 en PubMed, acerca de los tratamientos que se encuentran aún en ensayos clínicos y aquellos que cuentan con aprobación bajo uso de emergencia para la enfermedad COVID-19. También se realizaron búsquedas a través de Google y Google Académico para publicaciones de organismos de Salud en referencia a políticas de salud establecidas para la terapéutica durante dicha pandemia. Resultados: este trabajo aborda las nuevas alternativas terapéuticas para COVID-19 derivadas de la Biotecnología, que se encuentran tanto en uso como en etapas de ensayos clínicos comprendidos dentro del segmento de los biofármacos y las bioterapias. Se incluye un breve resumen del estatus regulatorio de entidades de salud, el mecanismo de acción de dichas terapias y características generales de cada uno. Se incluyen novedosas bioterapias que se empezaron a implementar para afrontar la pandemia. Conclusiones: la pandemia de coronavirus está poniendo a prueba el sistema sanitario internacional, para brindar soluciones tanto desde el diagnóstico y prevención como para el tratamiento de la población a fin de disminuir la mortalidad. Esto incluyó, obviamente también, al área de la Biotecnología aplicada a la salud, que ha aportado en los tres aspectos mencionados; el presente trabajo se centra en las respuestas de tipo terapéutico que ha brindado y que están comercializadas o en fases clínicas. (AU)


INTRODUCTION: A new coronavirus outbreak emerged in 2019 in Wuhan, China, causing a shock to the healthcare system around the world; the International Committee on Taxonomy of Viruses named it SARS-CoV- 2, the infectious agent of the COVID-19 disease. The spectrum of severity of the disease is very wide, most patients are not serious, but others can develop pneumonia, with acute respiratory failure being the most frequent cause of mortality. Objective: to analyze and develop the different therapeutic alternatives provided by Biotechnology dedicated to Health, to treat the symptoms of those COVID-19 patients who require it, and thus reduce mortality.Methodology: a review of the available literature from January 2020 in PubMed of the treatments that are still in clinical trials and those that have been approved under emergency use for the disease COVID-19 was performed. Searches were also carried out through Google and Google Scholar for publications of Health organizations in reference to health policies established for therapeutics during the mentioned pandemic. Results: this work addresses the new therapeutic alternatives derived from Biotechnology, which are both in use and in stages of clinical trials, to treat patients who developed COVID-19 included within the segment of biopharmaceuticals and biotherapies. A brief summary of the regulatory status of health entities, the mechanism of action of said therapies and general characteristics of each one is included. Innovative biotherapies that began to be implemented to face the pandemic are included. Conclusions: The coronavirus pandemic has driven the international health system to the test, to provide solutions both from the diagnosis, prevention and treatment of the population to reduce the mortality of patients. This obviously also included the area of Biotechnology applied to health, which has contributed in the three aspects mentioned. The present work focuses on the therapeutic responses that it has provided and that are commercialized or in clinical phases. (AU)


Subject(s)
Humans , Animals , Biological Products/therapeutic use , Biological Therapy/methods , Adrenal Cortex Hormones/therapeutic use , SARS-CoV-2/drug effects , COVID-19/drug therapy , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Biological Therapy/classification , Biological Therapy/standards , Biotechnology , Clinical Trials as Topic , Peptidyl-Dipeptidase A/drug effects , Angiotensin-Converting Enzyme 2/drug effects , Immunomodulating Agents/therapeutic use , COVID-19 Serotherapy , Horses , Immune Sera/biosynthesis , Antibodies, Monoclonal/therapeutic use
14.
Biomolecules ; 12(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36421688

ABSTRACT

BACKGROUND: SARS-CoV-2 has undergone mutations, yielding clinically relevant variants. HYPOTHESIS: We hypothesized that in SARS-CoV-2, two highly conserved Orf3a and E channels directly related to the virus replication were a target for the detection and inhibition of the viral replication, independent of the variant, using FDA-approved ion channel modulators. METHODS: A combination of a fluorescence potassium ion assay with channel modulators was developed to detect SARS-CoV-2 Orf3a/E channel activity. Two FDA-approved drugs, amantadine (an antiviral) and amitriptyline (an antidepressant), which are ion channel blockers, were tested as to whether they inhibited Orf3a/E channel activity in isolated virus variants and in nasal swab samples from COVID-19 patients. The variants were confirmed by PCR sequencing. RESULTS: In isolated SARS-CoV-2 Alpha, Beta, and Delta variants, the channel activity of Orf3a/E was detected and inhibited by emodin and gliclazide (IC50 = 0.42 mM). In the Delta swab samples, amitriptyline and amantadine inhibited the channel activity of viral proteins, with IC50 values of 0.73 mM and 1.11 mM, respectively. In the Omicron swab samples, amitriptyline inhibited the channel activity, with an IC50 of 0.76 mM. CONCLUSIONS: We developed an efficient method to screen FDA-approved ion channel modulators that could be repurposed to detect and inhibit SARS-CoV-2 viral replication, independent of variants.


Subject(s)
COVID-19 Drug Treatment , Ion Channels , SARS-CoV-2 , Humans , Amantadine/pharmacology , Amitriptyline/pharmacology , Ion Channels/antagonists & inhibitors , SARS-CoV-2/drug effects , Drug Evaluation, Preclinical , Drug Repositioning
15.
Arq. ciências saúde UNIPAR ; 26(3): 1376-1397, set-dez. 2022.
Article in English | LILACS | ID: biblio-1414509

ABSTRACT

In December 2019, a new coronavirus originating from the city of Wuhan in China started an epidemic that brought many countries into chaos and despair. SARS-CoV-2, as identified, gave rise to the severe acute respiratory syndrome called COVID-19. Its transmission happens through droplets of saliva, hand or contaminated surfaces. Since its discovery, COVID-19 has led many to death, therefore, researchers from around the world have joined efforts to develop strategies to contain the virus. In this race, drugs such as Chloroquine and Hydroxychloroquine have become possible options for showing an antiviral effect, however, studies contest their efficiency, generating uncertainties. Therefore, other alternatives have been investigated in this context, and the study of medicinal plants has been the target of research for the treatment of COVID-19 in search of bioactive natural products that can exert an antiviral action. The study aimed to analyze the published literature on COVID-19 (SARS-CoV-2) and its relationship with medicinal plants. Bibliographical survey. So far, no specific treatment against the disease has been found, only supportive, with drugs that aim to improve the individual's immune system and ensure that the virus does not replicate, for example, there are options such as chloroquine, hydroxychloroquine, remdesivir and convalescent plasma. On the other hand, studies have revealed that medicinal plants such as garlic, among others, showed efficiency in modulating proteins with a view to preventing viral replication and improving immunity against COVID-19. So far, there are no drugs that are completely safe and have been shown to have activity against the new coronavirus (SARS-CoV-2). However, medicinal plants can contribute to the development of specific therapies against SARS-CoV-2 in a safe and effective way.


Em dezembro de 2019, um novo coronavírus originário da cidade de Wuhan, na China, iniciou uma epidemia que levou muitos países ao caos e ao desespero. O SARS-CoV-2, conforme identificado, deu origem à síndrome respiratória aguda grave chamada COVID-19. Sua transmissão acontece através de gotículas de saliva, mãos ou superfícies contaminadas. Desde sua descoberta, o COVID-19 levou muitos à morte, por isso, pesquisadores de todo o mundo uniram esforços para desenvolver estratégias para conter o vírus. Nesta corrida, medicamentos como Cloroquina e Hidroxicloroquina tornaram-se opções possíveis por apresentarem efeito antiviral, porém, estudos contestam sua eficiência, gerando incertezas. Portanto, outras alternativas têm sido investigadas nesse contexto, e o estudo de plantas medicinais tem sido alvo de pesquisas para o tratamento da COVID- 19 em busca de produtos naturais bioativos que possam exercer ação antiviral. O estudo teve como objetivo analisar a literatura publicada sobre COVID-19 (SARS-CoV-2) e sua relação com plantas medicinais. Levantamento bibliográfico. Até o momento, não foi encontrado nenhum tratamento específico contra a doença, apenas de suporte, com medicamentos que visam melhorar o sistema imunológico do indivíduo e garantir que o vírus não se replique, por exemplo, há opções como cloroquina, hidroxicloroquina, remdesivir e convalescença plasma. Por outro lado, estudos revelaram que plantas medicinais como o alho, entre outras, mostraram eficiência na modulação de proteínas visando prevenir a replicação viral e melhorar a imunidade contra a COVID-19. Até o momento, não existem medicamentos completamente seguros e que tenham demonstrado atividade contra o novo coronavírus (SARS-CoV-2). No entanto, as plantas medicinais podem contribuir para o desenvolvimento de terapias específicas contra o SARS-CoV-2 de forma segura e eficaz.


En diciembre de 2019, un nuevo coronavirus originario de la ciudad de Wuhan, en China, inició una epidemia que sumió a muchos países en el caos y la desesperación. El SARS-CoV- 2, tal y como fue identificado, dio lugar al síndrome respiratorio agudo severo denominado COVID-19. Su transmisión se produce a través de gotitas de saliva, de las manos o de superficies contaminadas. Desde su descubrimiento, el COVID-19 ha llevado a muchos a la muerte, por lo que investigadores de todo el mundo han aunado esfuerzos para desarrollar estrategias de contención del virus. En esta carrera, fármacos como la Cloroquina y la Hidroxicloroquina se han convertido en posibles opciones por mostrar un efecto antiviral, sin embargo, los estudios refutan su eficacia, generando incertidumbres. Por lo tanto, otras alternativas han sido investigadas en este contexto, y el estudio de las plantas medicinales ha sido el objetivo de la investigación para el tratamiento de COVID-19 en busca de productos naturales bioactivos que puedan ejercer una acción antiviral. El estudio tuvo como objetivo analizar la literatura publicada sobre el COVID-19 (SARS-CoV-2) y su relación con las plantas medicinales. Estudio bibliográfico. Hasta el momento, no se ha encontrado un tratamiento específico contra la enfermedad, sólo de soporte, con fármacos que buscan mejorar el sistema inmunológico del individuo y asegurar que el virus no se replique, por ejemplo, existen opciones como la cloroquina, hidroxicloroquina, remdesivir y plasma convaleciente. Por otro lado, estudios han revelado que plantas medicinales como el ajo, entre otras, mostraron eficacia en la modulación de proteínas con vistas a impedir la replicación viral y mejorar la inmunidad contra el COVID-19. Hasta el momento, no existen medicamentos que sean completamente seguros y que hayan demostrado tener actividad contra el nuevo coronavirus (SARS-CoV-2). Sin embargo, las plantas medicinales pueden contribuir al desarrollo de terapias específicas contra el SARS-CoV-2 de forma segura y eficaz.


Subject(s)
Plants, Medicinal/immunology , SARS-CoV-2/drug effects , Antiviral Agents/antagonists & inhibitors , Antiviral Agents/therapeutic use , Viral Vaccines/antagonists & inhibitors , Chloroquine/therapeutic use , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus , Pandemics/prevention & control , Garlic/immunology , COVID-19/epidemiology , Hydroxychloroquine/therapeutic use
16.
Mar Drugs ; 20(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36135775

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Ulva , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chloroquine , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Humans , Interferon-alpha , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Terpenes/chemistry , Terpenes/pharmacology , Ulva/chemistry , COVID-19 Drug Treatment
17.
J Food Biochem ; 46(11): e14367, 2022 11.
Article in English | MEDLINE | ID: mdl-35994404

ABSTRACT

The World Health Organization has declared the novel coronavirus (COVID-19) outbreak a global pandemic and emerging threat to people in the 21st century. SARS-CoV-2 constitutes RNA-Dependent RNA Polymerase (RdRp) viral proteins, a critical target in the viral replication process. No FDA-approved drug is currently available, and there is a high demand for therapeutic strategies against COVID-19. In search of the anti-COVID-19 compound from traditional medicine, we evaluated the active moieties from Nilavembu Kudineer (NK), a poly-herbal Siddha formulation recommended by AYUSH against COVID-19. We conducted a preliminary docking analysis of 355 phytochemicals (retrieved from PubChem and IMPPAT databases) present in NK against RdRp viral protein (PDB ID: 7B3B) using COVID-19 Docking Server and further with AutoDockTool-1.5.6. MD simulation studies confirmed that Orientin (L1), Vitexin (L2), and Kasuagamycin (L3) revealed better binding activity against RdRp (PDB ID: 7B3B) in comparison with Remdesivir. The study suggests a potential scaffold for developing drug candidates against COVID-19. PRACTICAL APPLICATIONS: Nilavembu Kudineer is a poly-herbal Siddha formulation effective against various diseases like cough, fever, breathing problems, etc. This study shows that different phytoconstituents identified from Nilavembu Kudineer were subjected to in silico and ADME analyses. Out of the former 355 phytochemical molecules, Orientin (L1), Vitexin (L2), and Kasuagamycin (L3) showed better binding activity against RdRp viral protein (PDB ID: 7B3B) in comparison with the synthetic repurposed drug. Our work explores the search for an anti-COVID-19 compound from traditional medicine like Nilavembu Kudineer, which can be a potential scaffold for developing drug candidates against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Plant Preparations , RNA-Dependent RNA Polymerase , Humans , Molecular Docking Simulation , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Viral Proteins , Virus Replication/drug effects , Medicine, Ayurvedic , Plant Preparations/therapeutic use
18.
Front Cell Infect Microbiol ; 12: 965273, 2022.
Article in English | MEDLINE | ID: mdl-36034710

ABSTRACT

Purpose: The Corona Virus Disease 2019 (COVID-19) pandemic has become a challenge of world. The latest research has proved that Xuanfei Baidu granule (XFBD) significantly improved patient's clinical symptoms, the compound drug improves immunity by increasing the number of white blood cells and lymphocytes, and exerts anti-inflammatory effects. However, the analysis of the effective monomer components of XFBD and its mechanism of action in the treatment of COVID-19 is currently lacking. Therefore, this study used computer simulation to study the effective monomer components of XFBD and its therapeutic mechanism. Methods: We screened out the key active ingredients in XFBD through TCMSP database. Besides GeneCards database was used to search disease gene targets and screen intersection gene targets. The intersection gene targets were analyzed by GO and KEGG. The disease-core gene target-drug network was analyzed and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the number of hydrogen bonds, the binding free energy, the stability of protein target at the residue level, the solvent accessible surface area, and the radius of gyration. Results: XFBD had 1308 gene targets, COVID-19 had 4600 gene targets, the intersection gene targets were 548. GO and KEGG analysis showed that XFBD played a vital role by the signaling pathways of immune response and inflammation. Molecular docking showed that I-SPD, Pachypodol and Vestitol in XFBD played a role in treating COVID-19 by acting on NLRP3, CSF2, and relieve the clinical symptoms of SARS-CoV-2 infection. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets, CSF2/I-SPD combination has the strongest binding energy. Conclusion: For the first time, it was found that the important active chemical components in XFBD, such as I-SPD, Pachypodol and Vestitol, reduce inflammatory response and apoptosis by inhibiting the activation of NLRP3, and reduce the production of inflammatory factors and chemotaxis of inflammatory cells by inhibiting the activation of CSF2. Therefore, XFBD can effectively alleviate the clinical symptoms of COVID-19 through NLRP3 and CSF2.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , SARS-CoV-2 , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Molecular Dynamics Simulation , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2/drug effects
19.
Nutrients ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893899

ABSTRACT

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of -9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.


Subject(s)
Ananas , Bacteria , Bromelains , SARS-CoV-2 , Ananas/chemistry , Antiviral Agents/pharmacology , Bacteria/drug effects , Bromelains/pharmacology , COVID-19 , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects
20.
mBio ; 13(3): e0078422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35471084

ABSTRACT

The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Amino Acids , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases, Firefly , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL