Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 221(Pt 22)2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30224370

RESUMEN

Carotenoids give color to conspicuous animal signals that are often the product of sexual selection. Knowledge of the mechanisms involved in carotenoid-based signaling is critical to understanding how these traits evolve. However, these mechanisms remain only partially understood. Carotenoids are usually viewed as scarce dietary antioxidants whose allocation to ornaments may trade off against health. This trade-off would ensure its reliability as a signal of individual quality. In the case of red (keto)carotenoids, the literature suggests that some species may show constraints in their uptake. Canthaxanthin is one of the most common ketocarotenoids in red ornaments of animals. It is often commercially used as a dietary supplement to obtain redder birds (e.g. poultry). We increased the dietary canthaxanthin levels in captive red-legged partridges (Alectoris rufa). This species shows red non-feathered parts mostly pigmented by another common ketocarotenoid: astaxanthin. We studied the impact on the uptake of carotenoids and vitamins and, finally, on coloration. We also tested the potential protective effect of canthaxanthin when exposing birds to a free radical generator (diquat). Canthaxanthin did not apparently protect birds from oxidative stress, but interfered with the absorption of yellow carotenoids (lutein and zeaxanthin). Zeaxanthin is a precursor of astaxanthin in enzymatic pathways, and their levels in tissues and eggs were lower in canthaxanthin-supplied birds. This led to lower astaxanthin levels in ornaments and paler coloration. As far as we know, this is the first report of a carotenoid supplementation decreasing animal coloration. The results have implications for understanding carotenoid-based signaling evolution, but also for improving husbandry/experimental procedures.


Asunto(s)
Cantaxantina/farmacología , Color , Codorniz/fisiología , Xantófilas/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Diquat/farmacología , Femenino , Integumento Común/fisiología , Masculino , Óvulo/química , Estrés Oxidativo
2.
PeerJ ; 4: e2237, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27635308

RESUMEN

Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual's capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids). Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa), the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein) and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat) developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin) in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring higher oxidative damage in plasma lipids. Thus, higher color production would be linked to higher oxidative stress, supporting the biotransformation hypothesis. The recent discovery of an avian oxygenase enzyme involved in converting yellow to red carotenoids may support our results. Nonetheless, the effect could also depend on the abundance of specific substrate carotenoids in the diet. Birds fed with proportionally higher levels of zeaxanthin showed the reddest ornaments with the highest astaxanthin concentrations. Moreover, these birds tended to show the strongest diquat-mediated effect. Therefore, in the evolution of carotenoid-based sexual signals, a biotransformation cost derived from maintaining a well-adjusted redox machinery could coexist with a cost linked to carotenoid acquisition and allocation (i.e. a resource allocation trade-off).

3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(5-6): 341-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21239236

RESUMEN

Yellow-orange-red ornaments present in the integuments (feathers, bare parts) of birds are often produced by carotenoid pigments and may serve to signal the quality of the bearer. Although carotenoid esterification in tissues is a common phenomenon, most of the work on avian carotenoids has been focused on the identification of free forms or have been done after sample saponification. Here we determined free and esterified carotenoid composition in a bird species with red ornaments: the red-legged partridge (Alectoris rufa). Carotenoids from leg integument were extracted and processed by TLC to separate three major carotenoid groups (free form, mono- and diesters with fatty acids), whereas saponified extracts gave only free forms of carotenoids. TLC fractions were then analyzed by HPLC-DAD with C18 phase column for a preliminary identification of carotenoid groups. The final characterization of free carotenoids and its esters with fatty acids was performed with direct extracts analyzed by LC-MS and LC-MS/MS with a C30 phase, always with a system coupled to DAD. The main carotenoid (λ(max) 478 nm and [M+H](+) at m/z 597.2) was identified as astaxanthin by comparison with standards. A second carotenoid (λ(max) between 440 and 480 nm and [M+H](+) at m/z 581.3) was not identified among any of the commercially available carotenoid standards, although it could correspond to pectenolone according to its fragmentation pattern. Both the unidentified carotenoid and astaxanthin formed monoesters with fatty acids, but only astaxanthin was in its diesterified form. Monoesters were mainly formed with palmitic, stearic, oleic and linoleic acids. Complementary analyses of fatty acid composition in partridge integument by GC-MS revealed high amounts of these and other fatty acids, such as myristic, arachidic and docosanoic acids. The combination of HPLC-DAD and LC-MS/MS spectra was especially useful to identify the carotenoids present in the esterified forms and the probable masses of the fatty acids included in them, respectively.


Asunto(s)
Carotenoides/química , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/química , Plumas/química , Galliformes/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Antioxidantes , Carotenoides/clasificación , Femenino , Masculino , Piel/química , Pigmentación de la Piel
4.
Environ Int ; 33(6): 773-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17383727

RESUMEN

The Prestige oil spill in November 2002 is considered the biggest large-scale catastrophe of its type in Europe, thousands of seabirds dying in the subsequent months. Here, the total concentration of 16 polycyclic aromatic hydrocarbons (TPAH) was measured in the blood cell fraction of adult and chick yellow-legged gulls (Larus michahellis) from unoiled and oiled coastal areas in North Western Spain. In addition, hematocrit, plasma metabolites, electrolytes and enzymes, as well as body mass were determined in the same individuals. Our results strongly suggest the presence of health damages of sublethal nature in adult gulls breeding in oiled colonies 17 months after the Prestige oil spill. This is supported by the following evidences: (1) gulls sampled in unoiled and oiled colonies differed in blood TPAH levels, (2) gulls sampled in unoiled and oiled colonies differed in several blood parameters indicative of physiological disorders, and (3) TPAH in blood was significantly related to several of these parameters. Differences in the level of asparatate aminotransferase (AST), gamma-glutamyl transferase (GGT), total protein, glucose and inorganic phosphorus suggest damages on some vital organs (i.e. liver and kidney) in adult birds from oiled areas. Meanwhile, chicks presented weaker effects than adults, showing only between-area differences in hematocrit. Since TPAH levels in blood did not differ between both age-groups, the stronger effects on adults should be due to their longer exposure to these pollutants and/or to severe exposure in the months following the spill. The presence of PAHs in chicks indicates that these pollutants were incorporated into the food chain because nestlings would have been only exposed to contaminated organisms in the diet (e.g. fishes and crustaceans). Our findings support the view that PAHs may deeply alter the physiology of seabirds, and emphasize the necessity of quantifying the circulating levels of these compounds in order to evaluate the sublethal effects associated to large oil spills.


Asunto(s)
Charadriiformes/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Charadriiformes/sangre , Desastres , Femenino , Masculino , Petróleo/metabolismo , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/sangre , Contaminantes Químicos del Agua/sangre
5.
Oecologia ; 147(4): 576-84, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16341888

RESUMEN

The allocation of resources to reproduction and survival is a central question of studies of life history evolution. Usually, increased allocation to current reproduction is paid in terms of reduced future reproduction and/or decreased survival. However, the proximal mechanisms underlying the cost of reproduction are poorly understood. Recently, it has been shown that increased susceptibility to oxidative stress might be one of such proximate links between reproduction and self-maintenance. Organisms possess a range of antioxidant defenses, including endogenously produced molecules (e.g., enzymes) and compounds ingested with food (e.g., carotenoids). If reproductive effort increases the production of reactive oxygen species, the availability of antioxidant defenses may partly or fully counteract the free-radical damages. One could, therefore, expect that the trade-off between reproduction and oxidative stress is modulated by the availability of antioxidant defenses. We tested this hypothesis in zebra finches. We manipulated reproductive effort by either allowing or preventing pairs to breed. Within each breeding or non-breeding group, the availability of antioxidant compounds was manipulated by supplementing or not supplementing the drinking water with carotenoids. We found that although birds in the breeding and non-breeding groups did not differ in their resistance to oxidative stress (the breakdown of red blood cells submitted to a controlled free-radical attack), one aspect of breeding effort (i.e., the number of eggs laid by birds in both breeding and non-breeding groups) was negatively correlated with resistance to oxidative stress only in birds that did not benefit from a carotenoid-supplemented diet. This result therefore suggests that carotenoid availability can modulate the trade-off between reproduction and resistance to oxidative stress.


Asunto(s)
Carotenoides/metabolismo , Pinzones/fisiología , Oviposición/fisiología , Estrés Oxidativo/fisiología , Animales , Pico , Peso Corporal , Carotenoides/sangre , Color , Suplementos Dietéticos , Femenino , Masculino , Reproducción/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA