Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Mindfulness (N Y) ; 13(1): 92-103, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35833199

RESUMEN

Objectives: Mindfulness-Based Relapse Prevention (MBRP) and transcranial direct current stimulation (tDCS) have each demonstrated efficacy in improving outcomes in those with alcohol use disorder (AUD), however a recent study that combined MBRP with tDCS found tDCS provided no additional benefit to MBRP for AUD. Differences in treatment adherence between active versus sham tDCS groups may have contributed to this result. The current study examined whether treatment adherence interacted with tDCS condition in predicting post-treatment mindfulness and craving. Methods: This study was a secondary data analysis from a randomized sham-controlled trial comparing MBRP paired with tDCS. Linear regression analyses were conducted examining the interaction between tDCS condition and two measures of treatment adherence (i.e., number of groups attended, number of tDCS administrations) on post-treatment mindfulness and craving. Results: There was no effect of treatment adherence by tDCS condition in predicting mindfulness, however the interaction between treatment adherence and tDCS condition significantly predicted post-treatment craving. There was a significant negative association between treatment adherence and post-treatment craving in the sham group, but there was no association in the active tDCS group. Conclusions: MBRP coupled with sham stimulation led to significant reductions in self-reported craving when patients attended more sessions and received a greater number of sham tDCS administrations, while no relationship was observed between treatment adherence and craving among those who received active tDCS. This result provides tentative evidence that, rather than improve the effects of MBRP on craving, this active tDCS protocol provides no additional benefit to MBRP in reducing craving. Pre-registration: This study was registered with clinicaltrials.gov (NCT02861807).

3.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570244

RESUMEN

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Cuerpo Estriado/anatomía & histología , Hipocampo/anatomía & histología , Desarrollo Humano/fisiología , Neuroimagen , Tálamo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/diagnóstico por imagen , Niño , Preescolar , Cuerpo Estriado/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Adulto Joven
4.
Brain Stimul ; 13(3): 717-750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32289703

RESUMEN

The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.


Asunto(s)
Encéfalo/fisiología , Enfermedades del Sistema Nervioso Central/terapia , Cognición/fisiología , Nervios Craneales/fisiología , Terapia por Estimulación Eléctrica/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Enfermedades del Sistema Nervioso Central/fisiopatología , Nervios Craneales/diagnóstico por imagen , Nervios Craneales/fisiopatología , Electroencefalografía/métodos , Humanos , Neuroimagen/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
5.
Alcohol Alcohol ; 55(1): 78-85, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31825472

RESUMEN

AIM: Heightened craving among individuals with alcohol use disorder (AUD) has been attributed to a hypersensitivity to alcohol cues in attentional brain networks. Active mindfulness training has been shown to help improve attentional control. Here, we examined alcohol cue-related hypersensitivity among individuals with AUD who received rolling group mindfulness-based relapse prevention (MBRP) in combination with transcranial direct current stimulation (tDCS), over right inferior frontal gyrus. METHODS: Participants (n = 68) viewed a series of emotionally negative, emotionally neutral and alcohol-related images. Following image presentation, participants were asked to rate their level of craving for the alcohol cues, and their level of negative affect evoked by neutral and negative cues. During the task, electroencephalogram (EEG) was recorded to capture an event-related component shown to relate to emotionally salient stimuli: the late positive potential (LPP). Participants who completed a follow-up EEG (n = 37) performed the task a second time after up to eight sessions of MBRP coupled with active or sham tDCS. RESULTS: We found that both craving ratings and the LPP significantly decreased in response to alcohol cues from pre- to post-treatment, but not for other image cues. The magnitude of alcohol image craving reductions was associated with the number of MBRP group sessions attended. Active tDCS was not associated with craving ratings, but it was associated with greater LPP amplitudes across image types. CONCLUSIONS: Taken together, these results suggest that disruption of alcohol-cue hypersensitivity in people with AUD may be a target mechanism of MBRP.


Asunto(s)
Alcoholismo/fisiopatología , Alcoholismo/terapia , Potenciales Evocados/fisiología , Atención Plena , Prevención Secundaria/métodos , Estimulación Transcraneal de Corriente Directa , Adulto , Afecto , Anciano , Terapia Combinada/métodos , Ansia , Señales (Psicología) , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Corteza Prefrontal/fisiología , Adulto Joven
6.
Alcohol Clin Exp Res ; 43(6): 1296-1307, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977904

RESUMEN

BACKGROUND: Mindfulness-based relapse prevention (MBRP) and transcranial direct current stimulation (tDCS) have independently shown benefits for treating alcohol use disorder (AUD). Recent work suggests tDCS may enhance mindfulness. The combination of MBRP and tDCS may provide synergistic benefits and may target both behavioral and neurobiological dysfunctions in AUD. The goal of this double-blind sham-controlled randomized trial was to examine the efficacy of a rolling group MBRP treatment combined with tDCS among individuals interested in reducing their drinking. METHODS: Individuals who were interested in reducing their alcohol use (n = 84; 40.5% female; mean age = 52.3; 98.9% with current AUD) were randomized to receive active (2.0 milliamps) or sham (0.0 milliamps) anodal tDCS (5 cm × 3 cm electrode) of the right inferior frontal gyrus with the 5 cm × 3 cm cathodal electrode applied to the left upper arm, combined with 8 weeks of outpatient MBRP rolling group treatment. Assessments were conducted at baseline, posttreatment, and 2 months following treatment. The primary outcome was drinks per drinking day, and secondary outcomes were percent heavy drinking days, self-reported craving, alcohol cue reactivity in an alcohol cue task, and response inhibition in a stop signal reaction time task. RESULTS: Results indicated significant reductions in drinks per drinking day over time, B(SE) = -0.535 (0.16), p = 0.001, and a significant dose effect for number of groups attended, B(SE) = -0.259 (0.11), p = 0.01. There were also significant effects of time and dose for number of groups attended on secondary outcomes of percent heavy drinking days and alcohol cue reactivity. There were no effects of active versus sham tDCS on primary or secondary outcomes. CONCLUSIONS: Findings from the current study provide initial support for the effectiveness of rolling group MBRP as an outpatient treatment for drinking reduction. The current study did not find additive effects of this tDCS protocol in enhancing MBRP among individuals with drinking reduction goals.


Asunto(s)
Alcoholismo/terapia , Atención Plena , Estimulación Transcraneal de Corriente Directa , Adulto , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevención Secundaria , Adulto Joven
7.
Soc Neurosci ; 14(1): 10-25, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29067880

RESUMEN

Positive emotional perceptions and healthy emotional intelligence (EI) are important for social functioning. In this study, we investigated whether loving kindness meditation (LKM) combined with anodal transcranial direct current stimulation (tDCS) would facilitate improvements in EI and changes in affective experience of visual stimuli. LKM has been shown to increase positive emotional experiences and we hypothesized that tDCS could enhance these effects. Eighty-seven undergraduates were randomly assigned to 30 minutes of LKM or a relaxation control recording with anodal tDCS applied to the left dorsolateral prefrontal cortex (left dlPFC) or right temporoparietal junction (right TPJ) at 0.1 or 2.0 milliamps. The primary outcomes were self-reported affect ratings of images from the International Affective Picture System and EI as measured by the Mayer, Salovey and Caruso Emotional Intelligence Test. Results indicated no effects of training on EI, and no main effects of LKM, electrode placement, or tDCS current strength on affect ratings. There was a significant interaction of electrode placement by meditation condition (p = 0.001), such that those assigned to LKM and right TPJ tDCS, regardless of current strength, rated neutral and positive images more positively after training. Results suggest that LKM may enhance positive affective experience.


Asunto(s)
Inteligencia Emocional/fisiología , Meditación , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Femenino , Humanos , Masculino , Proyectos Piloto , Adulto Joven
8.
Heliyon ; 4(7): e00685, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30094362

RESUMEN

Mindfulness-based training (MBT) and transcranial electrical stimulation (TES) methods such as direct current stimulation (tDCS) have demonstrated promise for the augmentation of cognitive abilities. The current study investigated the potential compatibility of concurrent "electrical" MBT and tDCS (or eMBT) by testing its combined effects on behavioral and neurophysiological indices of working memory (WM) and attentional resource allocation. Thirty-four healthy participants were randomly assigned to either a MBT task with tDCS group (eMBT) or an active control training task with sham tDCS (Control) group. Training lasted 4-weeks, with up to twenty MBT sessions and with up to eight of those sessions that were eMBT sessions. Electroencephalography was acquired during varying WM load conditions using the n-back task (1-, 2-, 3-back), along with performance on complex WM span tasks (operation and symmetry span) and fluid intelligence measures (Ravens and Shipley) before and after training. Improved performance was observed only on the 3-back and spatial span tasks for eMBT but not the Control group. During 3-back performance in the eMBT group, an increase in P3 amplitude and theta power at electrode site Pz was also observed, along with a simultaneous decrease in frontal midline P3 amplitude and theta power compared to the Control group. These results are consistent with the neural efficiency hypothesis, where higher cognitive capacity was associated with more distributed brain activity (i.e., increase in parietal and decrease in frontal amplitudes). Future longitudinal studies are called upon to further examine the direct contributions of tDCS on MBT by assessing the differential effects of electrode montage, polarity, current strength and a direct contrast between the eMBT and MBT conditions on performance and neuroimaging outcome data. While preliminary, the current results provided evidence for the potential compatibility of using eMBT to modulate WM capacity through the allocation of attention and its neurophysiological correlates.

9.
Dose Response ; 15(1): 1559325816685467, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28210202

RESUMEN

The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose-response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged.

10.
Prog Neuropsychopharmacol Biol Psychiatry ; 37(1): 161-8, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22230646

RESUMEN

Patients with schizophrenia (SP) exhibit deficits in both attentional reorienting and inhibition of return (IOR) during visual tasks. However, it is currently unknown whether these deficits are supramodal in nature and how these deficits relate to other domains of cognitive dysfunction. In addition, the neuronal correlates of this pathological orienting response have not been investigated in either the visual or auditory modality. Therefore, 30 SP and 30 healthy controls (HC) were evaluated with an extensive clinical protocol and functional magnetic resonance imaging (fMRI) during an auditory cuing paradigm. SP exhibited both increased costs and delayed IOR during auditory orienting, suggesting a prolonged interval for attentional disengagement from cued locations. Moreover, a delay in the development of IOR was associated with cognitive deficits on formal neuropsychological testing in the domains of attention/inhibition and working memory. Event-related fMRI showed the characteristic activation of a frontoparietal network (invalid trials>valid trials), but there were no differences in functional activation between patients and HC during either attentional reorienting or IOR. Current results suggest that orienting deficits are supramodal in nature in SP, and are related to higher-order cognitive deficits that directly interfere with day-to-day functioning.


Asunto(s)
Percepción Auditiva/fisiología , Inhibición Psicológica , Imagen por Resonancia Magnética/métodos , Orientación/fisiología , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Estimulación Acústica/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Neuropsychologia ; 49(12): 3178-87, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807011

RESUMEN

In real-world settings, information from multiple sensory modalities is combined to form a complete, behaviorally salient percept - a process known as multisensory integration. While deficits in auditory and visual processing are often observed in schizophrenia, little is known about how multisensory integration is affected by the disorder. The present study examined auditory, visual, and combined audio-visual processing in schizophrenia patients using high-density electrical mapping. An ecologically relevant task was used to compare unisensory and multisensory evoked potentials from schizophrenia patients to potentials from healthy normal volunteers. Analysis of unisensory responses revealed a large decrease in the N100 component of the auditory-evoked potential, as well as early differences in the visual-evoked components in the schizophrenia group. Differences in early evoked responses to multisensory stimuli were also detected. Multisensory facilitation was assessed by comparing the sum of auditory and visual evoked responses to the audio-visual evoked response. Schizophrenia patients showed a significantly greater absolute magnitude response to audio-visual stimuli than to summed unisensory stimuli when compared to healthy volunteers, indicating significantly greater multisensory facilitation in the patient group. Behavioral responses also indicated increased facilitation from multisensory stimuli. The results represent the first report of increased multisensory facilitation in schizophrenia and suggest that, although unisensory deficits are present, compensatory mechanisms may exist under certain conditions that permit improved multisensory integration in individuals afflicted with the disorder.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adulto , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología , Estadística como Asunto , Adulto Joven
12.
J Acoust Soc Am ; 119(1): 575-81, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16454311

RESUMEN

Primary auditory cortex (PAC), located in Heschl's gyrus (HG), is the earliest cortical level at which sounds are processed. Standard theories of speech perception assume that signal components are given a representation in PAC which are then matched to speech templates in auditory association cortex. An alternative holds that speech activates a specialized system in cortex that does not use the primitives of PAC. Functional magnetic resonance imaging revealed different brain activation patterns in listening to speech and nonspeech sounds across different levels of complexity. Sensitivity to speech was observed in association cortex, as expected. Further, activation in HG increased with increasing levels of complexity with added fundamentals for both nonspeech and speech stimuli, but only for nonspeech when separate sources (release bursts/fricative noises or their nonspeech analogs) were added. These results are consistent with the existence of a specialized speech system which bypasses more typical processes at the earliest cortical level.


Asunto(s)
Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Habla , Dominancia Cerebral , Imagen Eco-Planar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Espectrografía del Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA