Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Ethnopharmacol ; 325: 117864, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38325671

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Cananga oil (CO) is derived from the flowers of the traditional medicinal plant, the ylang-ylang tree. As a traditional antidepressant, CO is commonly utilized in the treatment of various mental disorders including depression, anxiety, and autism. It is also recognized as an efficient antibacterial insecticide, and has been traditionally utilized to combat malaria and acute inflammatory responses resulting from bacterial infections both in vitro and in vivo. AIM OF THE STUDY: The objective of this study is to comprehensively investigate the anti-Salmonella activity and mechanism of CO both in vitro and in vivo, with the expectation of providing feasible strategies for exploring new antimicrobial strategies and developing novel drugs. METHODS: The in vitro antibacterial activity of CO was comprehensively analyzed by measuring MIC, MBC, growth curve, time-killing curve, surface motility, biofilm, and Live/dead bacterial staining. The analysis of the chemistry and active ingredients of CO was conducted using GC-MS. To examine the influence of CO on the membrane homeostasis of Salmonella, we conducted utilizing diverse techniques, including ANS, PI, NPN, ONPG, BCECF-AM, DiSC3(5), and scanning electron microscopy (SEM) analysis. In addition, the antibacterial mechanism of CO was analyzed and validated through metabolomics analysis. Finally, a mouse infection model of Salmonella typhimurium was established to evaluate the toxic side effects and therapeutic effects of CO. RESULTS: The antibacterial effect of CO is the result of the combined action of the main chemical components within its six (palmitic acid, α-linolenic acid, stearic acid, benzyl benzoate, benzyl acetate, and myristic acid). Furthermore, CO disrupts the balance of purine metabolism and the tricarboxylic acid cycle (TCA cycle) in Salmonella, interfering with redox processes. This leads to energy metabolic disorders and oxidative stress damage within the bacteria, resulting in bacterial shock, enhanced membrane damage, and ultimately bacterial death. It is worth emphasizing that CO exerts an effective protective influence on Salmonella infection in vivo within a non-toxic concentration range. CONCLUSION: The outcomes indicate that CO displays remarkable anti-Salmonella activity both in vitro and in vivo. It triggers bacterial death by disrupting the balance of purine metabolism and the TCA cycle, interfering with the redox process, making it a promising anti-Salmonella medication.


Asunto(s)
Cananga , Infecciones por Salmonella , Humanos , Animales , Ratones , Ciclo del Ácido Cítrico , Infecciones por Salmonella/tratamiento farmacológico , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Homeostasis , Purinas/farmacología , Pruebas de Sensibilidad Microbiana
2.
Plant J ; 117(3): 679-693, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921032

RESUMEN

During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.


Asunto(s)
Catequina , Ciclopentanos , Isoleucina/análogos & derivados , Oxilipinas , Transcriptoma , Catequina/análisis , Catequina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fitomejoramiento , Té/química , Té/metabolismo , Hormonas/análisis , Hormonas/metabolismo , Terpenos/metabolismo , Hojas de la Planta/metabolismo
3.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838612

RESUMEN

As a major virulence factor of Listeria monocytogenes (L. monocytogenes), listeriolysin O (LLO) can assist in the immune escape of L. monocytogenes, which is critical for the pathogen to evade host immune recognition, leading to various infectious diseases. Cinnamon twig (CT), as a traditional medicine, has been widely used in clinics for multiple functions and it has exhibited excellent safety, efficacy and stability. There are few reports on the effects of the extracts of traditional medicine on bacterial virulence factors. CT has not been reported to be effective in the treatment of L. monocytogenes infection. Therefore, this study aims to explore the preventive effect of CT against L. monocytogenes infection in vivo and in vitro by targeting LLO. Firstly, a hemolysis assay and a cell viability determination are used to detect the effect of CT extract on the inhibition of the cytolytic activity of LLO. The potential mechanism through which CT extract inhibits LLO activity is predicted through network pharmacology, molecular docking assay, real-time polymerase chain reaction (RT-PCR), Western blotting and circular dichroism (CD) analysis. The experimental therapeutic effect of CT extract is examined in a mouse model infected with L. monocytogenes. Then, the ingredients are identified through a high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) analysis. Here we find that CT extract, containing mainly cinnamic acid, cinnamaldehyde, ß-sitosterol, taxifolin, catechin and epicatechin, shows a potential inhibition of LLO-mediated hemolysis without any antimicrobial activity. The results of the mechanism research show that CT extract treatment can simultaneously inhibit LLO expression and oligomerization. Furthermore, the addition of CT extract led to a remarkable alleviation of LLO-induced cytotoxicity. After treatment with CT extract, the mortality, bacterial load, pathological damage and inflammatory responses of infected mice are significantly reduced when compared with the untreated group. This study suggests that CT extract can be a novel and multicomponent inhibitor of LLO with multiple strategies against L. monocytogenes infection, which could be further developed into a novel treatment for infections caused by L. monocytogenes.


Asunto(s)
Listeria monocytogenes , Listeriosis , Animales , Ratones , Cinnamomum zeylanicum , Simulación del Acoplamiento Molecular , Hemólisis , Listeriosis/tratamiento farmacológico , Listeriosis/microbiología , Proteínas Hemolisinas , Factores de Virulencia/metabolismo
4.
Phytomedicine ; 109: 154561, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610156

RESUMEN

BACKGROUND: NAFLD is a liver disease that is caused by liver damage or extreme lipid deposition but not alcohol. Nrf2 could mediate resistance to oxidative stress injury. Autophagy can degrade metabolic waste and accumulated toxic endogenous substances. Pterostilbene (PTE) is an active compound extracted from blueberry, and grape, that exhibits many biological effects, such as antiinflammation and antitumor. PURPOSE: This study provides a mechanism of PTE affecting on oxidative stress and autophagy in NAFLD mice. Tyloxapol, oil acid (OA) and palmitic acid (PA) were used to induce lipid accumulation in mice and HepG2 cells. METHODS: Western blotting, CRISPR/Cas 9 and other molecular biological approaches were applied to explore the mechanisms of PTE effected on NAFLD. RESULTS: PTE pretreatment effectively reduced the lipid accumulation in OA and PA induced HepG2 cells and tyloxapol induced mice, and significantly promoted the expression of nNrf2, PPAR-α and HO-1, and AMPK activity, but inhibited the expression of mTORC 1 and SREBP-1c. PTE activated phosphatidylinositide 3-kinase (PI3K) and proteins in the autophagy-related gene (ATG) family, and promoted the transformation of LC3Ⅰ to LC3Ⅱ which indicated the activation of autophagy, however, these effects were abolished after Nrf2 knockout. CONCLUSION: PTE effectively alleviated oxidative stress damage induced by excessive lipid accumulation in hepatocytes, thus promoting the metabolism and decomposition of fatty acids to improve NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Autofagia , Ácidos Grasos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL
5.
Microbiol Spectr ; 10(6): e0294922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377917

RESUMEN

The increasingly serious problem of bacterial drug resistance has led to the development of antivirulence agents. The Salmonella enterica serovar Typhimurium Salmonella pathogenicity island (SPI)-encoded type III secretion system (T3SS) and its effector proteins are important virulence factors for S. Typhimurium invasion and replication in host cells and for antivirulence drug screening. Fraxetin is isolated from Fraxinus spp. Extensive studies have reported its multiple pharmacological activities. However, it remains to be elucidated whether fraxetin affects the function of the S. Typhimurium T3SS. In this study, the anti-infection mechanism of fraxetin on S. Typhimurium and its T3SS was investigated. Fraxetin inhibited the S. Typhimurium invasion of HeLa cells without affecting the growth of bacteria in vitro. Further findings on the mechanism showed that fraxetin had an inhibitory effect on the S. Typhimurium T3SS by inhibiting the transcription of the pathogenesis-related SPI-1 transcriptional activator genes hilD, hilC, and rtsA. Animal experiments showed that fraxetin treatment protected mice against S. Typhimurium infection. Collectively, we provide the first demonstration that fraxetin may serve as an effective T3SS inhibitor for the development of treatments for Salmonella infection. IMPORTANCE The increasingly serious problem of bacterial antibiotic resistance limits the clinical application of antibiotics, which increases the need for the development of antivirulence agents. The type III secretion system (T3SS) plays a critical role in host cell invasion and pathogenesis of Salmonella and becomes a popular target for antivirulence agents screening. Our study found, for the first time, that fraxetin inhibited S. Typhimurium invasion by inhibiting the transcription of genes in a feed-forward regulatory loop. Further in vivo testing showed that fraxetin decreased bacterial burdens in the spleen and liver of S. Typhimurium-infected mice and improved survival outcomes in an in vivo mouse model of S. Typhimurium infection. Collectively, these results demonstrate that fraxetin inhibits S. Typhimurium infection by targeting the T3SS and may serve as a potential agent for the treatment of S. Typhimurium infection.


Asunto(s)
Salmonella typhimurium , Sistemas de Secreción Tipo III , Humanos , Animales , Ratones , Sistemas de Secreción Tipo III/metabolismo , Células HeLa , Serogrupo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Food Funct ; 13(19): 9761-9771, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36124641

RESUMEN

The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanisms underlying the action against microorganisms remain largely unexplored. Salmonella enterica is a common pathogen causing both gastrointestinal and systemic diseases. In Salmonella enterica, the type III secretion system (T3SS) is employed to export secreted effectors directly to the cytoplasm of host cells. Using a SipA-ß-lactamase reporter, we found that hyperoside (HYP) inhibited the activity of Salmonella T3SS needle protein InvG, prevented damage to host cells and protected mice against Salmonella enterica serovar Typhimurium. It was also observed that HYP binds to InvG directly through hydrogen-bridged cations and hydrophobic interactions. The unique mechanism of antibacterial action of HYP suggested that it could be used as a potentially effective candidate for future antimicrobial regimens.


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes , Hidrógeno/farmacología , Ratones , Quercetina/análogos & derivados , Sistemas de Secreción Tipo III/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamasas/farmacología
7.
BMC Genomics ; 23(1): 612, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999493

RESUMEN

BACKGROUND: Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. ß-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing ß-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS: To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION: The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.


Asunto(s)
Alcaloides , Celulasas , Dendrobium , Plantas Medicinales , Alcaloides/metabolismo , Celulasas/genética , Dendrobium/genética , Dendrobium/metabolismo , Flavonoides/metabolismo , Filogenia , Plantas Medicinales/química , Polisacáridos/metabolismo
8.
J Ethnopharmacol ; 297: 115571, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35870686

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Genkwa flos (yuanhua in Chinese), the dried flower buds of the plant Daphne genkwa Siebold & Zucc., as a traditional herb widely used for the treatment of inflammation-related symptoms and diseases, with the efficacies of diuretic, phlegm-resolving and cough suppressant. AIM OF THE STUDY: Traditional Chinese Medicine (TCM) is presumed to be of immense potential against pathogens infection. Whereas, the potential efficacy and mechanisms of Genkwa flos against L. monocytogenes infection has not been extensively explored. The present study aimed to identify the bioactive ingredients of Genkwa flos against L. monocytogenes infection and to delineate the underlying mechanisms of action. MATERIALS AND METHODS: Bioinformatics approach at protein network level was employed to investigate the therapeutic mechanisms of Genkwa flos against L. monocytogenes infection. And hemolysis inhibition assay, cytoprotection test, western blotting, oligomerization assay and molecular docking analysis were applied to substantiate the multiple efficacies of Genkwa flos and the bioactive ingredient genkwanin. Histopathological analysis and biochemistry detection were conducted to evaluate the in vivo protective effect of genkwanin. RESULTS: Network pharmacology and experimental validation revealed that Traditional Chinese Medicine (TCM) Genkwa flos exhibited anti-L. monocytogenes potency and was found to inhibit the hemolytic activity of LLO. Bioactive ingredient genkwanin interfered with the pore-forming activity of LLO by engaging the active residues Tyr414, Tyr98, Asn473, Val100, Tyr440 and Val438, and thereby attenuated LLO-mediated cytotoxicity. Consistent with the bioinformatics prediction, exposed to genkwanin could upregulate the Nrf2 level and promote the translocation of Nrf2. In vivo, genkwanin oral administration (80 mg/kg) significantly protected against systemic L. monocytogenes infection, as evidenced by reduced myeloperoxidase (MPO) and malondialdehyde (MDA) levels, increased mice survival rate by 30% and decreased pathogen colonization. CONCLUSION: Our study demonstrated that Genkwa flos is a potential anti-L. monocytogenes TCM, highlighted the therapeutic potential of Genkwa flos active ingredient genkwanin by targeting the pore-forming cytolysin LLO and acting as a promising antioxidative candidate against L. monocytogenes infection.


Asunto(s)
Listeria monocytogenes , Factor 2 Relacionado con NF-E2 , Animales , Flavonas , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flores/química , Ratones , Simulación del Acoplamiento Molecular
9.
Phytomedicine ; 98: 153946, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158237

RESUMEN

BACKGROUND: Colistin (polymyxin E) is an effective antibiotic for the treatment of most multidrug-resistant Gram-negative bacteria. However, some bacteria, including bacterial spp. belonging to the Enterobacteriaceae family, have an acquired resistance against polymyxins, which is attributed to they possess plasmid-carried resistance genes (mcr-1 and its variants). So, there is an urgent need to develop new therapeutic strategies to target broad spectrum resistant spp. from Enterobacteriaceae family in response to the loss of the protective barrier of last-line antibiotics. Here, we report the adjuvant capacity of nordihydroguaiaretic acid (NDGA) for restoring the antibacterial activity of colistin against MCR-1-positive E. coli ZJ487 in vivo/in vitro. METHODS: A checkerboard assay, time-killing analysis, isobolograms, growth curves and inducible resistance test showed the effect of NDGA combined with colistin in vitro. TLC was used to detect the inhibitory effect of NDGA on MCR-1. Colony determination and hematoxylin and eosin (HE) staining were used to assess the synergistic effect of NDGA and colistin in mice. RESULTS: Our results showed that NDGA in combination with colistin showed a synergistic bactericidal action without inducing resistance. NDGA directly inhibited MCR-1 activity and resulted in measurable injury to the bacterial cell membrane to recover the antibacterial effect of colistin. Most importantly, NDGA in combination with colistin exhibited an in vivo synergistic effect in murine peritonitis infection models, as evidenced by the survival rate of MCR-1-positive E. coli ZJ487-infected mice which increased from 6.67 to 50.0%. CONCLUSION: Our study demonstrated that NDGA effectively rescues the efficiency of colistin against MCR-positive E. coli ZJ487 by simultaneously inhibiting both, the MCR activity and the injury to the cell membrane of bacteria.

10.
Chin Med ; 16(1): 106, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663394

RESUMEN

BACKGROUND: The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. METHODS: Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. RESULTS: Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. CONCLUSION: Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.

11.
Front Pharmacol ; 12: 674955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512322

RESUMEN

Many important bacterial pathogens are using the type III secretion system to deliver effectors into host cells. Salmonella Typhimurium (S. Typhimurium) is a pathogenic Gram-negative bacterium with the type III secretion system as its major virulence factor. Our previous studies demonstrated that thymol, a monoterpene phenol derivative of cymene, inhibited S. Typhimurium invasion into mammalian cells and protected mice from infection. However, the antibacterial mechanism of thymol is not clear. In this study, we revealed that thymol interferes with the abundance of about 100 bacterial proteins through proteomic analysis. Among the 42 proteins whose abundance was reduced, 11 were important virulence factors associated with T3SS-1. Further analyses with SipA revealed that thymol directly interacts with this protein to induce conformational changes, which makes it susceptible to the Lon protease. In agreement with this observation, thymol effectively blocks cell invasion by S. Typhimurium. Thus, thymol represents a class of anti-virulence compounds that function by targeting pathogenic factors for degradation.

12.
Front Microbiol ; 11: 1504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760362

RESUMEN

Gas gangrene, caused mainly by the anaerobic bacterium Clostridium perfringens (C. perfringens), causes death within 48 h of onset. Limited therapeutic strategies are available, and it is associated with extremely high mortality. Both C. perfringens alpha toxin (CPA) and perfringolysin O (PFO) are important virulence factors in the development of gas gangrene, suggesting that they are therapeutic targets. Here, we found that verbascoside, a phenylpropanoid glycoside widely distributed in Chinese herbal medicines, could effectively inhibit the biological activity of both CPA and PFO in hemolytic assays. The oligomerization of PFO was remarkably inhibited by verbascoside. Although no antibacterial activity was observed, verbascoside treatment protected Caco-2 cells from the damage caused by CPA and PFO. Additionally, infected mice treated with verbascoside showed significantly alleviated damage, reduced bacterial burden, and decreased mortality. In summary, verbascoside has an effective therapeutic effect against C. perfringens virulence both in vitro and in vivo by simultaneously targeting CPA and PFO. Our results provide a promising strategy and a potential lead compound for C. perfringens infections, especially gas gangrene.

13.
Phytomedicine ; 71: 153241, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32454347

RESUMEN

BACKGROUND: Oxidative stress-triggered fatal hepatotoxicity is an essential pathogenic factor in acute liver failure (ALF). AIMS: To investigate the protective effect of daphnetin (Daph) on tert-butyl hydroperoxide (t-BHP) and acetaminophen (APAP)-induced hepatotoxicity through altering Nrf2/Trx-1 pathway activation. MATERIALS AND METHODS: In vivo, male C57BL/6 mice with Wild-type (WT) and Nrf2-/- were divided into five groups and acute liver injury model were established by APAP or LPS/GalN after injection with Daph (20, 40, or 80 mg/kg), seperately. Then, liver tissue and serum were collected for biochemical determination, TUNEL and H & E staining, and western blot analysis. In vitro, HepG2 cells were used to investigate the protective effect and mechanism of daphnetin against ROS and apoptosis induced by t-BHP via apoptosis detection, western blot, immunofluorescence analysis, and sgRNA transfection. RESULTS: Our results indicated that Daph efficiently inhibited t-BHP-stimulated hepatotoxicity, and modulated Trx-1 expression and Nrf2 activation which decreased Keap1-overexpression in HepG2 cells. Moreover, Daph inhibited t-BHP-excited hepatotoxicity and enhanced Trx-1 expression, which was reversed in Nrf2-/- HepG2 cells. In vivo, a survival rate analysis first suggested that Daph significantly reduced the lethality induced by APAP or GalN/LPS in a Nrf2-dependent or -independent manner by using Nrf2-/- mice, respectively. Next, further results implicated that Daph not only effectively alleviated APAP-induced an increase of ALT and AST levels, histopathological changes, ROS overproduction, malondialdehyde (MDA) formation and GSH/GSSG reduction, but it also relieved hepatic apoptosis by strengthening the suppression of cleaved-caspase-3 and expression of P53 protein. Additionally, Daph attenuated mitochondrial dysfunction by suppressing ASK1/JNK activation and decreasing apoptosis-inducing factor (AIF) and Cytochrome c release and Bax mitochondrial translocation. Daph inhibited inflammatory responses by inactivating the thioredoxin-interacting protein (Txnip)/NLRP3 inflammasome. Furthermore, Daph efficiently enhanced Nrf2 nuclear translocation and Trx-1 expression. However, these effects in WT mice were eliminated in Nrf2-/- mice. CONCLUSIONS: These investigations demonstrated that Daph treatment has protective potential against oxidative stress-driven hepatotoxicity by inhibition of ASK1/JNK and Txnip/NLRP3 activation, which may be strongly related to the Nrf2/Trx-1 upregulation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Inflamasomas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Umbeliferonas/farmacología , Acetaminofén/efectos adversos , Animales , Proteínas Portadoras/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Hep G2 , Humanos , Inflamasomas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/fisiología , Sustancias Protectoras/farmacología
14.
Appl Microbiol Biotechnol ; 104(4): 1673-1682, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31897522

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.


Asunto(s)
Acetofenonas/farmacología , Paeonia/química , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Sistemas de Secreción Tipo III/antagonistas & inhibidores , Animales , Carga Bacteriana , Proteínas Bacterianas/antagonistas & inhibidores , Traslocación Bacteriana/efectos de los fármacos , Citocinas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología , Transactivadores/antagonistas & inhibidores , Sistemas de Secreción Tipo III/efectos de los fármacos
15.
FEMS Microbiol Lett ; 366(10)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31125043

RESUMEN

Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans and animals around the globe. The type IV pilus (TFP) system plays a key role in the colonization and invasion of host cells, biofilm formation and gliding motility, which is vital for C. perfringens infection. Therefore, targeting TFP function may be a promising strategy for the treatment of C. perfringens infection. Here, we investigated the potential inhibitory effects of tectorigenin (TE), an isoflavone extracted from the rhizome of the Chinese herb Belamcanda chinensis (L.) DC, on gliding motility, biofilm formation, adherence to cells and antibacterial activity of C. perfringens. Tectorigenin significantly inhibited gliding motility, biofilm formation and adherence to Caco-2 cells without observable antibacterial activity against C. perfringens. In addition, we also demonstrated that the inhibitory effect of TE on TFP function appears to be partially achieved by the suppression of TFP-associated genes. These findings demonstrate that TE may have the potential to be developed as a new anti-virulence drug for C. perfringens infection, particularly for the targeting of TFP.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Clostridium perfringens/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Isoflavonas/farmacología , Biopelículas/efectos de los fármacos , Células CACO-2 , Clostridium perfringens/genética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Movimiento/efectos de los fármacos
16.
Cell Death Dis ; 10(4): 313, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952839

RESUMEN

Licochalcone A (Lico A), isolated from Xinjiang licorice Glycyrrhiza inflate, has been shown to have antioxidative potential via the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) activation, which is involved in the prevention of acetaminophen-induced hepatotoxicity. The purpose of the current study was to further explore the protective effect of Lico A against lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury (ALI) and its underlying molecular mechanisms. Our results found that treatment with Lico A significantly reduced in LPS/GalN-induced hepatotoxicity by lessening lethality, alleviating histopathological liver changes, decreasing the alanine transaminase, and aspartate aminotransferase levels, attenuating the secretion of inflammatory cytokines, and regulating oxidative markers. Furthermore, Lico A efficiently alleviated LPS-induced inflammatory response by inhibiting TLR4-MAPK and -NF-κB, as well as the Txnip-NLRP3 signaling pathway. Meanwhile, Lico A induced the activation of Nrf2 and QSTM1 (P62) signaling and promoted autophagy involved in AMP-activated protein kinase (AMPK)-the transcription factor EB (TFEB) signaling, which may contribute to its hepatoprotective activity. Additional mechanistic investigations to evaluate the dependence of the hepatoprotective role of Lico A on Nrf2 revealed that a lack of Nrf2 promoted Lico A-induced autophagy, which contributed to the hepatoprotective effect of Lico A in Nrf2-/- mice. In addition, cotreatment with autophagy inhibitor (3-methyladenine, 3-MA) alleviated but did not abrogate the hepatoprotective effect of Lico A, which may be attributed to its ability to activate Nrf2. Our study firstly suggests that Lico A has protective potential against LPS/GalN-induced hepatotoxicity, which may be strongly associated with activation of Nrf2 and autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Chalconas/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Galactosamina/toxicidad , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Autofagia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chalconas/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/mortalidad , Citocinas/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo
17.
J Agric Food Chem ; 66(45): 11957-11967, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30354109

RESUMEN

Diabetic nephropathy (DN) is a major complication of type 2 diabetes (T2D), which is a key determinant of mortality in diabetic patients. Developing new therapeutic drugs which can not only control T2D but also prevent the development of DN is of great significance. We studied the therapeutic potential of Cuiyu tea polypeptides (TP), natural bioactive peptides isolated from a type of green tea, against DN and its underlying molecular mechanisms. TP (1000 mg/kg bw/day, p.o.) administration for 5 weeks significantly reduced the fasting blood glucose by 52.04 ± 9.23% in the high fat diet/streptozocin (HFD/STZ)-induced (30 mg/kg bw) diabetic mice. Compared to the model group, the serum insulin level of the TP group was decreased by 25.54 ± 6.06%, while at the same time, the HOMA-IR, HOMA-IS, and lipid levels showed different degrees of recovery ( p < 0.05). Moreover, in TP group mice the total urinary protein, creatinine, and urine nitrogen, all which can reflect the damage degree of the glomerular filtration function to a certain extent, dramatically declined by 34.51 ± 2.65%, 42.24 ± 15.24%, and 80.30 ± 6.01% compared to the model group, respectively. Mechanistically, TP stimulated the polyol PKCζ/JNK/NF-κB/TNF-α/iNOS and AGEs/RAGE/TGF-ß1 pathways, upregulated the expression of podocin in the glomeruli, and decreased the release of pro-inflammatory cytokines. These results strongly indicate the therapeutic potential of TP against DN.


Asunto(s)
Camellia sinensis/química , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , FN-kappa B/metabolismo , Péptidos/administración & dosificación , Extractos Vegetales/administración & dosificación , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Tasa de Filtración Glomerular/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones , FN-kappa B/genética , Transducción de Señal/efectos de los fármacos , Té/química
18.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315078

RESUMEN

Streptococcus suis, an important zoonotic pathogen, has caused considerable economic losses in the swine industry and severe public health issues worldwide. The development of a novel effective strategy for the prevention and therapy of S. suis is urgently needed. Here, amentoflavone, a natural biflavonoid compound isolated from Chinese herbs that has negligible anti-S. suis activity, was identified as a potent antagonist of suilysin (SLY)-mediated hemolysis without interfering with the expression of SLY. Amentoflavone effectively inhibited SLY oligomerization, which is critical for its pore-forming activity. The treatment with amentoflavone reduced S. suis-induced cytotoxicity in macrophages (J774 cells). Furthermore, S. suis-infected mice that received amentoflavone exhibited lower mortality and bacterial burden. Additionally, amentoflavone significantly decreased the production of tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-6 in an S. suis-infected cell model. Analyses of signaling pathways demonstrated that amentoflavone reduced S. suis-induced inflammation in S. suis serotype 2 (SS2)-infected cells by regulating the p38, Jun N-terminal protein kinase 1 and 2 (JNK1/2), and NF-κB pathways. The antivirulence and anti-inflammatory properties of amentoflavone against S. suis infection provide the possibility for future pharmaceutical application of amentoflavone in the treatment of S. suis infection.IMPORTANCE The widespread use of antibiotics in therapy and in the prevention of Streptococcus suis infection in the swine industry raises concerns for the emergence of a resistant strain. The use of antivirulence agents has potential benefits, mainly because of the reduced selective pressure for the development of bacterial resistance. In this study, we found that amentoflavone is an effective agent against S. suis serotype 2 (SS2) infection both in vitro and in vivo Our results demonstrated that amentoflavone is a promising anti-infective therapeutic for S. suis infections, due to its antivirulence and anti-inflammatory effects without antibacterial activity, with fewer side effects than conventional antibacterial agents.


Asunto(s)
Antibacterianos/farmacología , Biflavonoides/farmacología , Proteínas Hemolisinas/antagonistas & inhibidores , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus suis/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Biflavonoides/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Femenino , Hemólisis/efectos de los fármacos , Inflamación , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Proteína Quinasa 8 Activada por Mitógenos , Proteína Quinasa 9 Activada por Mitógenos , FN-kappa B/metabolismo , Serogrupo , Infecciones Estreptocócicas/microbiología , Streptococcus suis/crecimiento & desarrollo , Streptococcus suis/metabolismo , Streptococcus suis/patogenicidad , Porcinos , Enfermedades de los Porcinos/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia/efectos de los fármacos
19.
Front Microbiol ; 9: 1022, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867906

RESUMEN

Type III secretion system (T3SS) is an essential pathogenic determinant for many important bacterial pathogens; it functions to thwart immune defense by delivering effectors into host cells. Because of its essential role in bacterial virulence, this machinery is an important target in the development of novel anti-virulence therapeutics. By using an effector-lactamase fusion reporter, we identified thymol, a monoterpene phenol derivative of cymene, as an effective inhibitor of the T3SS-1 of Salmonella Typhimurium. Our results indicate that thymol effectively protected mice against S. Typhimurium-induced mortality and pathological damages, suggesting that this compound can be developed for the control of infections caused by Salmonella species.

20.
Mol Biol Rep ; 45(5): 689-697, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29923153

RESUMEN

The effects of certain tea components on the prevention of obesity in humans have been reported recently. However, whether Yinghong NO. 9 black tea consumption has beneficial effects on obesity are not known. Here, we obtained a Yinghong NO. 9 black tea infusion (Y9 BTI) and examined the anti-obesity effects of its oral administration. ICR mice were fed a standard diet supplemented with Y9 BTI at 0.5, 1.0, or 2.0 g/kg body weight for two weeks, and the body weight were recorded. HE staining was used to evaluate the effect of Y9 BTI on mice liver. Western blot analysis was used to detect the expression levels of related proteins in the mice liver and adipose. We found that the body weights of the mice in the control group were significantly higher than those of the mice in the middle and high dose groups. The results of western blot showed that Y9 BTI up-regulated the expression of liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and also increased in AMPK phosphorylation (p-AMPK) and LKB1 phosphorylation (p-LKB1). Y9 BTI significantly down-regulated Fas Cell Surface Death Receptor(FAS) and activated the phosphorylation of acetyl-CoA carboxylase (ACC). Furthermore, Y9 BTI (2.0 g/kg BW) down-regulated the expression of three factors (IL-1ß, Cox-2, and iNOS). Altogether, Y9 BTI supplementation reduced the feed intake of mice and may prevent obesity by inhibiting lipid absorption. These results suggest that Y9 BTI may regulate adipogenic processes through the LKB1/AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Obesidad/tratamiento farmacológico , Té/metabolismo , Té/fisiología , Acetil-CoA Carboxilasa/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos ICR , Nutrientes/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Receptor fas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA