Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 171: 105697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797794

RESUMEN

Two previously undescribed isoquinoline alkaloids, bracteatinine (1) and isogroenlandicine (2), together with four known alkaloids - coptisine (3), dehydrocorydaline (4), palmatine (5) and jatrorrhizine (6) were isolated from the aerial parts of Corydalis bracteata (Steph. Ex. Willd.) Pers. The structures of the compounds were elucidated using 1D and 2D NMR data along with HRESI-MS. The isolated new compounds bracteatinine and isogroenlandicine are close structural derivatives and isomers of corgoine and groenlandicine, respectively. Bracteatinine is also notable, being a representative of the rare 2-benzylisoquinoline alkaloids. Many natural products isolated from different plants are used as adjuvants, in addition to standard chemotherapy, in treatment of different cancers. Cancer-associated thrombosis remains a common complication and leading cause of mortality for cancer patients. Because platelets play the key role in thrombotic complications, we investigated effects of the isolated alkaloids 1-6 on platelet reactivity and showed that they did not significantly affect platelet function.


Asunto(s)
Alcaloides , Corydalis , Neoplasias , Humanos , Corydalis/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Isoquinolinas/farmacología , Isoquinolinas/química
2.
J Biol Chem ; 298(12): 102615, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265580

RESUMEN

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Asunto(s)
NAD , Purina-Nucleósido Fosforilasa , Humanos , Ratones , Animales , NAD/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Niacinamida/farmacología , Niacinamida/metabolismo , Compuestos de Piridinio , Mamíferos/metabolismo
3.
Planta Med ; 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688458

RESUMEN

One new compound isoembinin 1 along with ten known compounds 2-11 were isolated from the terrestrial parts of Iris lactea Pall. All of the compound structures were determined through extensive 1D and 2D NMR experiments along with HR-ESIMS analysis and comparison with literature data. Because many flavonoids exert antiplatelet and antioxidant activity we tested the effects of the isolated flavone C-glycosides 1-9 on platelet activation and reactive oxygen species (ROS) production. Platelet reactivity was assessed by activation of αIIbß3 integrins activation and ROS production by DCF-DA fluorescence. For the analysis of whether protein kinase A or G are involved in the platelet inhibition, the activity of these kinases was analyzed by phosphorylation of their common substrate in platelets. In all experiments apigenin, which inhibit platelet activation was used as a positive control. All isolated flavone C-glycosides inhibited platelet αIIbß3 integrins activation with IC50 in the µM range, however this inhibitory effect was found to not be mediated through the prevention of ROS formation or by the activation of cyclic nucleotide pathways. Structure-activity comparison between apigenin and compounds 1-9 shows that the presence of C-glycoside and O-glycoside residues on the aglycone apigenin diminish the degree of platelet inhibition.

4.
Biochem Biophys Res Commun ; 586: 20-26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823218

RESUMEN

Curcumin is a natural polyphenol derived from the turmeric plant (Curcuma longa) which exhibits numerous beneficial effects on different cell types. Inhibition of platelet activation by curcumin is well known, however molecular mechanisms of its action on platelets are not fully defined. In this study, we used laser diffraction method for analysis of platelet aggregation and Western blot for analysis of intracellular signaling mechanisms of curcumin effects on platelets. We identified two new molecular mechanisms involved in the inhibitory effects of curcumin on platelet activation. Firstly, curcumin by activation of adenosine A2A receptor stimulated protein kinase A activation and phosphorylation of Vasodilator-stimulated phosphoprotein. Secondly, we demonstrated that curcumin even at low doses, which did not inhibit platelet aggregation, potentiated inhibitory effect of ADP receptor P2Y12 antagonist cangrelor which partly could be explained by activation of adenosine A2A receptor.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Plaquetas/efectos de los fármacos , Moléculas de Adhesión Celular/genética , Curcumina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Microfilamentos/genética , Fosfoproteínas/genética , Activación Plaquetaria/efectos de los fármacos , Receptor de Adenosina A2A/genética , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Plaquetas/citología , Plaquetas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Curcuma/química , Curcumina/aislamiento & purificación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sinergismo Farmacológico , Regulación de la Expresión Génica , Humanos , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Extractos Vegetales/química , Inhibidores de Agregación Plaquetaria/farmacología , Cultivo Primario de Células , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptor de Adenosina A2A/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065600

RESUMEN

Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated thrombin generation. Platelet viability was not affected by curcumin at low concentration and was reduced by 17% at high concentration. Furthermore, curcumin-induced autophagy in human platelets via increased translocation of LC3I to LC3II, which was associated with activation of adenosine monophosphate (AMP) kinase and inhibition of protein kinase B activity. Because curcumin inhibits P-glycoprotein (P-gp) in cancer cells and contributes to overcoming multidrug resistance, we showed that curcumin similarly inhibited platelet P-gp activity. Our results revealed that the platelet inhibitory effect of curcumin is mediated by complex processes, including procoagulant platelet formation. Thus, curcumin may protect against or enhance caspase-dependent apoptosis in platelets under certain conditions.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Plaquetas/efectos de los fármacos , Curcumina/farmacología , Nitrofenoles/farmacología , Sulfonamidas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Monofosfato/metabolismo , Plaquetas/metabolismo , Curcuma/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , Piperazinas/farmacología , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Kidney Int ; 64(1): 216-25, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12787412

RESUMEN

BACKGROUND: In ischemic acute renal failure (ARF), nitric oxide-dependent regulation of renal hemodynamics and glomerular function is disturbed. Previous studies indicate that the nitric oxide precursor l-arginine (l-Arg) has beneficial effects on renal function. Here we further analyzed the impact of l-Arg on functional and biochemical parameters of nitric oxide signaling during the course of ischemic ARF. METHODS: Ischemic ARF was induced in rats by bilateral clamping of renal arteries for 45 minutes. l-Arg was applied intraperitoneally during clamping, and orally during 14 days of follow-up. Glomerular filtration rate (GFR) and renal plasma flow (RPF) were measured, and biochemical parameters analyzed by protein immunoblots. RESULTS: Clamping resulted in 70% to 90% reduction of GFR and RPF, with a gradual recovery by day 14. Using an in situ assay with the oxidative fluorescent dye hydroethidine, increased tubular generation of O2- was detected in the early course of ischemic ARF, indicating enhanced oxidative stress. These findings were accompanied by up-regulation of the nitric oxide receptor, soluble guanylate cyclase, and by significant regulatory changes of inducible nitric oxide synthase (iNOS) and endothelial NOS expression. l-Arg had a beneficial effect on GFR and RPF, decreased O2- production, diminished up-regulation of soluble guanylate cyclase, and prevented up-regulation of iNOS. CONCLUSION: Ischemic ARF is accompanied by marked alterations in the expression of key enzymes of the nitric oxide pathway, indicative for deficiency of constitutive NOS activity. l-Arg supplementation reduces O2- generation and significantly improves the expression of nitric oxide signaling proteins as well as the recovery phase of ischemic ARF.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Arginina/farmacología , Isquemia/complicaciones , Óxido Nítrico/deficiencia , Circulación Renal , Lesión Renal Aguda/metabolismo , Animales , Arginina/sangre , Presión Sanguínea/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Guanilato Ciclasa/metabolismo , Semivida , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Circulación Renal/efectos de los fármacos , Solubilidad , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA