Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559293

RESUMEN

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

2.
Phytomedicine ; 128: 155279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581801

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Mitofagia , Osteoartritis , Ratas Sprague-Dawley , Animales , Osteoartritis/tratamiento farmacológico , Condrocitos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Mitofagia/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo , Cartílago Articular/efectos de los fármacos , Proteínas Mitocondriales/metabolismo
3.
Phytomedicine ; 129: 155579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574427

RESUMEN

BACKGROUND AND AIMS: Chronic coronary syndrome (CCS) has always been controversial in its therapeutic strategy. Although invasive treatment and optimal medication therapy (OMT) are the most commonly used treatments, doctors continue to debate the best strategy. However, traditional Chinese medicine (TCM) for CCS is effective clinically. METHODS: To identify potentially eligible observational and experimental studies, we searched Pubmed, the Web of Science, and the China National Knowledge Internet. To be eligible, studies had to report with end-of treatment outcomes, such as major adverse cardiac events (MACE), deaths from myocardial infarctions (MI), all-cause mortality, angina, cardiac mortality, the effectiveness rate of electrocardiographs, and the reduction rate of the Nitroglycerin tablets. Risk differences (RDs) and 95 % confidence intervals (95 % CIs) were calculated based on random-effects models or fixed-effects models. Citation screening, data abstraction, risk assessment, and strength-of-evidence grading were completed by 2 independent reviewers. RESULTS: In Section 1 (13 studies, involving 17,287 patients), showed no significant difference between invasive treatment and medication treatment in MACE (RD = -0.04, 95% CI = -0.08 to 0.00, I2 = 76.4 %), all-cause mortality (RD = -0.01, 95%CI = -0.022 to 0.01, I2 = 73.44 %), MI (RD = 0.00, 95%CI = -0.00 to 0.01, I2 = 0.00 %) and cardiac mortality (RD = 0.00, 95 %CI = -0.01 to 0.01, I2 = 34.9 %). In Section 2 (21 studies, including 1820 patients), compared with WM treatment, TCM + WM treatment increased ECG effectiveness by 18 %, angina effectiveness by 20 %, and stopping or reducing Nitroglycerin tablets by 20 %. In Section 3 (25 studies, including 2859 patients) showed that TCM revealed a better electrocardiogram effective rate (RD = 0.10, 95 %CI = 0.05 to 0.14, I2 = 44.7 %) and angina effective rate (RD = 0.12, 95 %CI = 0.09 to 0.15, I2 = 44.9 %). We identified that TCM treatment properties of "Circulating blood and transforming stasis" and application of warm/heat-properties medicines were frequently used in CCS treatment. CONCLUSIONS: TCM treatment has shown superior beneficial cardioprotective in CCS therapy strategy, among which "Circulating blood and transforming stasis" and the application of warm/heat-properties medicine are its characteristics.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Enfermedad Crónica/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos , Infarto del Miocardio/tratamiento farmacológico
4.
Phytomedicine ; 128: 155475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492368

RESUMEN

BACKGROUND: The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE: This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS: Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS: The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION: Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Medicamentos Herbarios Chinos , Peroxidación de Lípido , Macrófagos , Fosfolípidos , Microambiente Tumoral , Medicamentos Herbarios Chinos/farmacología , Microambiente Tumoral/efectos de los fármacos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Femenino , Ratones , Araquidonato 15-Lipooxigenasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fagocitosis/efectos de los fármacos , Ratones Endogámicos BALB C , Células RAW 264.7
5.
J Ethnopharmacol ; 324: 117780, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278377

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Luohanguo Qingfei granules (LQG) is a Chinese patent medicine, clinically used to treat flu-like symptoms including cough with yellow phlegm, impeded phlegm, dry throat and tongue. However, the protective activity of LQG against influenza infection is indeterminate. AIM OF THE STUDY: This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. MATERIALS AND METHODS: In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively. RESULTS: LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-ß transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG. CONCLUSION: These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-ß antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Animales , Ratones , Humanos , Interferón Tipo I/farmacología , Interferón Tipo I/uso terapéutico , Gripe Humana/tratamiento farmacológico , Transducción de Señal , Antivirales/farmacología , Antivirales/uso terapéutico , Inmunidad Innata
6.
Nat Commun ; 14(1): 5083, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607944

RESUMEN

Radiation colitis is the leading cause of diarrhea and hematochezia in pelvic radiotherapy patients. This work advances the pathogenesis of radiation colitis from the perspective of ferroptosis. An oral Pickering emulsion is stabilized with halloysite clay nanotubes to alleviate radiation colitis by inhibiting ferroptosis. Ceria nanozyme grown in situ on nanotubes can scavenge reactive oxygen species, and deferiprone was loaded into the lumen of nanotubes to relieve iron stress. These two strategies effectively inhibit lipid peroxidation and rescue ferroptosis in the intestinal microenvironment. The clay nanotubes play a critical role as either a medicine to alleviate colitis, a nanocarrier that targets the inflamed colon by electrostatic adsorption, or an interfacial stabilizer for emulsions. This ferroptosis-based strategy was effective in vitro and in vivo, providing a prospective candidate for radiotherapy protection via rational regulation of specific oxidative stress.


Asunto(s)
Colitis , Ferroptosis , Gastritis , Humanos , Arcilla , Sistemas de Liberación de Medicamentos , Colitis/tratamiento farmacológico
7.
J Integr Med ; 21(5): 441-454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596131

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) continues to spread worldwide. Integrated Chinese and Western medicine have had some successes in treating COVID-19. OBJECTIVE: This study aims to evaluate the efficacy and safety of three traditional Chinese medicine drugs and three herbal formulas (3-drugs-3-formulas) in patients with COVID-19. SEARCH STRATEGY: Relevant studies were identified from 12 electronic databases searched from their establishment to April 7, 2022. INCLUSION CRITERIA: Randomized controlled trials (RCTs), non-RCTs and cohort studies that evaluated the effects of 3-drugs-3-formulas for COVID-19. The treatment group was treated with one of the 3-drugs-3-formulas plus conventional treatment. The control group was treated with conventional treatment. DATA EXTRACTION AND ANALYSIS: Two evaluators screened and selected literature independently, then extracted basic information and assessed risk of bias. The treatment outcome measures were duration of main symptoms, hospitalization time, aggravation rate and mortality. RevMan 5.4 was used to analyze the pooled results reported as mean difference (MD) with 95% confidence interval (CI) for continuous data and risk ratio (RR) with 95% CI for dichotomous data. RESULTS: Forty-one studies with a total of 13,260 participants were identified. Our analysis suggests that compared with conventional treatment, the combination of 3-drugs-3-formulas might shorten duration of fever (MD = -1.39; 95% CI: -2.19 to -0.59; P < 0.05), cough (MD = -1.57; 95% CI: -2.16 to -0.98; P < 0.05) and fatigue (MD = -1.36; 95% CI: -2.21 to -0.51; P < 0.05), decrease length of hospital stay (MD = -2.62; 95% CI -3.52 to -1.72; P < 0.05), the time for nucleic acid conversion (MD = -2.92; 95% CI: -4.26 to -1.59; P < 0.05), aggravation rate (RR = 0.49; 95% CI: 0.38 to 0.64; P < 0.05) and mortality (RR = 0.34; 95% CI: 0.19 to 0.62; P < 0.05), and increase the recovery rate of chest computerized tomography manifestations (RR = 1.22; 95% CI: 1.14 to 1.3; P < 0.05) and total effectiveness (RR = 1.24; 95% CI: 1.09 to 1.42; P < 0.05). CONCLUSION: The 3-drugs-3-formulas can play an active role in treating all stages of COVID-19. No severe adverse events related to 3-drugs-3-formulas were observed. Hence, 3-drugs-3-formulas combined with conventional therapies have effective therapeutic value for COVID-19 patients. Further long-term high-quality studies are essential to demonstrate the clinical benefits of each formula. Please cite this article as: You LZ, Dai QQ, Zhong XY, Yu DD, Cui HR, Kong YF, Zhao MZ, Zhang XY, Xu QQ, Guan ZY, Wei XX, Zhang XC, Han SJ, Liu WJ, Chen Z, Zhang XY, Zhao C, Jin YH, Shang HC. Clinical evidence of three traditional Chinese medicine drugs and three herbal formulas for COVID-19: A systematic review and meta-analysis of the Chinese population. J Integr Med. 2023; 21(5): 441-454.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Pueblo Asiatico , Tos/etiología , COVID-19/complicaciones , COVID-19/terapia , Fiebre/etiología , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Tratamiento Farmacológico de COVID-19/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Indian J Microbiol ; 63(2): 222-229, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325019

RESUMEN

In this study, a new cholesterol-free delivery system named RL-ßC-Rts was developed using rhamnolipid (RL) as the surfactant and encapsulating both ß-carotene (ßC) and rutinoside (Rts). The purpose was to examine its antibacterial properties against four food-borne pathogenic microorganisms including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. m), and Salmonella typhimurium (S. typhimurium) and to investigate the mechanism behind the inhibition. Results from bacterial viability tests and minimum inhibitory concentration (MIC) showed RL-ßC-Rts possessed antibacterial activity. Upon further examination of the cell membrane potential, it was observed that E. coli, S. aureus, L. m, and S. typhimurium exhibited a reduction in mean fluorescence intensity by 50.17%, 34.07%, 34.12%, and 47.05%, respectively. These decreases suggested damage to the structure of the cell membrane, which subsequently resulted in the discharge of proteins from the bacteria and the consequential impairment of crucial functions. This was supported by alterations in protein concentration. The results of the RT-qPCR showcased that the expression of genes associated with energy metabolism, tricarboxylic acid cycle, DNA metabolism, virulence factor formation and cell membrane formation could be suppressed by RL-ßC-Rts. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01077-6.

9.
Chin Med ; 18(1): 67, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280712

RESUMEN

BACKGROUND: Dermatophyte caused by Trichophyton mentagrophytes is a global disease with a growing prevalence that is difficult to cure. Perilla frutescens (L.) Britt. is an edible and medicinal plant. Ancient books of Traditional Chinese Medicine and modern pharmacological studies have shown that it has potential anti-fungi activity. This is the first study to explore the inhibitory effects of compounds from P. frutescens on Trichophyton mentagrophytes and its mechanism of action coupled with the antifungal activity in vitro from network pharmacology, transcriptomics and proteomics. METHODS: Five most potential inhibitory compounds against fungi in P. frutescens was screened with network pharmacology. The antifungal activity of the candidates was detected by a broth microdilution method. Through in vitro antifungal assays screening the compound with efficacy, transcriptomics and proteomics were performed to investigate the pharmacological mechanisms of the effective compound against Trichophyton mentagrophytes. Furthermore, the real-time polymerase chain reaction (PCR) was applied to verify the expression of genes. RESULTS: The top five potential antifungal compounds in P. frutescens screened by network pharmacology are: progesterone, luteolin, apigenin, ursolic acid and rosmarinic acid. In vitro antifungal assays showed that rosmarinic acid had a favorable inhibitory effect on fungi. The transcriptomic findings exhibited that the differentially expressed genes of fungus after rosmarinic acid intervention were mainly enriched in the carbon metabolism pathway, while the proteomic findings suggested that rosmarinic acid could inhibit the average growth of Trichophyton mentagrophytes by interfering with the expression of enolase in the glycolysis pathway. Comparison of real-time PCR and transcriptomics results showed that the trends of gene expression in glycolytic, carbon metabolism and glutathione metabolic pathways were identical. The binding modes and interactions between rosmarinic acid and enolase were preliminary explored by molecular docking analysis. CONCLUSION: The key findings of the present study manifested that rosmarinic acid, a medicinal compound extracted from P. frutescens, had pharmacological activity in inhibiting the growth of Trichophyton mentagrophytes by affecting its enolase expression to reduce metabolism. Rosmarinic acid is expected to be an efficacious product for prevention and treatment of dermatophytes.

10.
Phytomedicine ; 116: 154864, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37182278

RESUMEN

BACKGROUND: Lycium barbarum (Wolfberry) extract has been shown to be effective in neuroprotection against aging or neural injury. Knowledge of its potential roles and biological mechanisms in relieving mental disorders, however, remains limited. PURPOSE: To investigate the potency of Lycium barbarum glycopeptide (LbGp) in alleviating anxiety disorders and the related biological mechanisms. METHODS: LbGp was administrated to mice subjected to 14 days of chronic restrain stress (CRS) via the intragastric route. The anxiolytic effect was evaluated by a battery of behavioral assays. The morphology of neurons and glial cells was evaluated, and cortical neuronal calcium transients were recorded in vivo. The molecular mechanism of LbGp was also investigated. RESULTS: LbGp effectively relieved anxiety-like and depressive behaviors under CRS. Mechanistic studies further showed that LbGp treatment relieved oxidative stress and lipid peroxidation in the medial prefrontal cortex (mPFC). In particular, the ferroptosis pathway was inhibited by LbGp, revealing a previously unrecognized mechanism of the anxiolytic role of wolfberry extract. CONCLUSION: In summary, our results supported the future development of LbGp to prevent or ameliorate stress-induced anxiety disorders. Our work provides a promising strategy for early intervention for pateitents with mental disorders by applying natural plant extracts.


Asunto(s)
Ferroptosis , Lycium , Ratones , Animales , Lycium/química , Glicopéptidos/farmacología , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico , Ansiedad , Corteza Prefrontal
11.
J Ethnopharmacol ; 314: 116570, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37187360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qishen Yiqi Pills (QSYQ) is a classical herbal formula for treating heart failure (HF) and has potential efficacy in improving cognitive function. The latter is one of the most common complications in patients with HF. However, there is no study on treating HF-related cognitive dysfunction by QSYQ. AIMS OF THE STUDY: The study aims to investigate the effect and mechanism of QSYQ on treating post-HF cognitive dysfunction based on network pharmacology and experimental validation. MATERIALS AND METHODS: Network pharmacology analysis and molecular docking was used to explore endogenous targets of QSYQ in treating cognitive impairment. Ligation of the anterior descending branch of the left coronary artery and sleep deprivation (SD) were used to induce HF-related cognitive dysfunction in rats. The efficacy and potential signal targets of QSYQ were then verified by functional evaluation, pathological staining, and molecular biology experiments. RESULTS: 384 common targets were identified by intersecting QSYQ 'compound targets' and 'cognitive dysfunction' disease targets. KEGG analysis showed these targets were enriched to the cAMP signal, and four marks responsible for regulating the cAMP signal were successfully docked with core compounds of QSYQ. Animal experiments demonstrated that QSYQ significantly ameliorated cardiac function and cognitive function in rats suffering from HF and SD, inhibited the reduction of cAMP and BDNF content, reversed the upregulation of PDE4 and downregulation of CREB, suppressed the loss of neurons, and restored the expression of synaptic protein PSD95 in the hippocampus. CONCLUSION: This study clarified that QSYQ could improve HF-related cognitive dysfunction by modulating cAMP-CREB-BDNF signals. It provides a rich basis for the potential mechanism of QSYQ in the treatment of heart failure with cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Ratas , Animales , Simulación del Acoplamiento Molecular , Factor Neurotrófico Derivado del Encéfalo , Farmacología en Red , Insuficiencia Cardíaca/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Cognición
12.
Front Pharmacol ; 14: 1135264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214436

RESUMEN

Introduction: Chuanxiong, a traditional Chinese medicine, has been proved to treat a variety of cardiovascular and cerebrovascular diseases by promoting angiogenesis. However, the mechanisms of Chuanxiong's pro-angiogenesis is currently unknown. This study aimed to uncover the effect and mechanisms of Chuanxiong promoting angiogenesis in vivo and in vitro. Methods: First, potential targets were predicted by network pharmacology analysis, and PPI network was established and the pathways were enriched. Then, the chorioallantoic membrane test on quails was applied to assess the proangiogenic effects in vivo. As well, to evaluate the effects in vitro, real-time PCR, western blot analysis, the scratch test, and the tube formation experiment were used. Subsequently, the major metabolic pathways were analyzed using non-targeted metabolomics. Results: As a result of network pharmacological analysis, 51 collective targets of Chuanxiong and angiogenesis were identified, which are mainly associated with PI3K/AKT/Ras/MAPK pathway. And the biological verification results showed that Chuanxiong could increase the vessel numbers and vessel area in qCAM models. Meanwhile, Chuanxiong contributed to HUVEC proliferation, tube formation, migration, by encouraging scratch healing rates and boosting tube branch points. In addition, the levels of VEGFR2, MAPK and PI3K were elevated compared to the control group. The western blot analysis also confirmed Chuanxiong could promote an increase in AKT, FOXO1 and Ras. Furtheremore, metabolomic results showed that the proangiogenic effect of Chuanxiong is associated with glycine, serine and threonine metabolism. Discussion: In conclusion, this study clarified that Chuanxiong could promote angiogenesis in vivo and in vitro via regulating PI3K/AKT/Ras/MAPK pathway.

13.
Phytomedicine ; 114: 154749, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931097

RESUMEN

BACKGROUND: Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE: To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS: Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS: In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION: Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Isquemia Miocárdica , Ratas , Ratones , Animales , Medicina Tradicional China , Simulación del Acoplamiento Molecular , NADP/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Fosfolípidos
14.
Artículo en Inglés | MEDLINE | ID: mdl-36248405

RESUMEN

Neuropathic pain remains a chronic and intractable pain. Recent studies have shown a close relationship between gamma-aminobutyric acid A (GABAA) receptor and neuropathic pain. Spinal cord GABAA receptors are key modulators of pain processing. Electroacupuncture (EA) is currently used worldwide to relieve pain. The immunomodulatory effect of EA in animals has been proposed in previous studies. However, it remains unclear how EA contributes to alleviating neuropathic pain. In this study, the chronic constriction injury (CCI) rat model was used to explore the relationship between GABAA receptor and neuropathic pain. We also investigated whether EA treatment could ameliorate pain hypersensitivity by modulating the GABAA receptor. To determine the function of EA in neurological diseases, in this study, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were assessed to determine the threshold of pain. In addition, we used Western blot, immunofluorescence, and real-time quantitative PCR to confirm whether EA treatment relieves pain hypersensitivity by regulating GABAA receptors. The morphology of synapse was examined using an electron microscope. In the present study, EA relieved mechanical allodynia and thermal hyperalgesia. EA also inhibited microglial activation in the spinal cord, accompanied by increased levels of GABAARα2, GABAARα3, and GABAARγ2 subunits. However, the analgesic effect of EA was attenuated by treatment with the GABAA receptor antagonist bicuculine. Overall, the present results indicate that microglia and GABAA receptor might participate in EA analgesia. These results contribute to our understanding of the impact of EA on rats after sciatic nerve compression, providing a theoretical basis for the clinical application of EA analgesia.

15.
Biomed Pharmacother ; 155: 113676, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36088856

RESUMEN

Transient receptor potential vanilloid type 1 (TRPV1), involved in multiple pathophysiological processes including inflammation, is a thermally activated, non-selective cation channel. It has been identified that TRPV1 is highly involved in some common respiratory diseases including allergic rhinitis, asthma, chronic obstructive pulmonary disease, and pulmonary infection by participating in neurogenic and immunogenic inflammation, sensitization, and oxidative stress. In recent years, the hypothesis of transient receptor potential (TRP) has been introduced in studies on the theory of five flavors and four properties of Chinese medicinal. However, the hypothesis is undetermined due to the multi-component and multi-target characteristics of Chinese medicinal. This study describes the relations between TRPV1 and four types of respiratory diseases based on the literature in recent five years. In the meantime, the therapeutic effect of Chinese medicinal by intervening TRPV1 was reviewed, in an attempt to provide certain evidence for future studies on the medicinal property-effect relationship, mechanism of drug action, the syndrome differentiation in traditional Chinese medicine (TCM) for respiratory diseases and to help for new drug development.


Asunto(s)
Asma , Enfermedades Respiratorias , Humanos , Canales Catiónicos TRPV , Medicina Tradicional China , Enfermedades Respiratorias/tratamiento farmacológico , Asma/tratamiento farmacológico , Inflamación
16.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4823-4828, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164889

RESUMEN

Advances in science and technology promote the rapid development of toxicological detection technologies. However, there is still a lack of decision-making tools for toxicological risk assessment, such as the lack of transparent schemes to evaluate current toxicological research and practice and the lag of toxicological testing tools to evaluate toxicity, resulting in difficulties in toxicity verification and hindering the transformation of toxicological research paradigm. Some scholars have proposed to integrate the concept of evidence-based medicine with the toxicological practice to improve the technical methods of toxicological research concept and risk assessment decision-making. With the promotion of relevant scholars and academic organizations, the concept and connotation of evidence-based toxicology have gradually become clear and a framework for research and practice has been initially formed. Although there are still many challenges, it also provides a new idea for the toxicity risk assessment and safe medication decision-making of traditional Chinese medicine(TCM). The era of digital intelligence has brought new opportunities and broad space for the development of TCM evidence-based toxicology. The exploration of TCM evidence-based toxicology from concept to method is an important embodiment of the development of TCM evidence-based toxicology, and will also promote the continuous enrichment and improvement of the research and practice system of TCM evidence-based toxicology.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Medicamentos Herbarios Chinos/toxicidad , Medicina Basada en la Evidencia , Proyectos de Investigación
17.
J Pharm Anal ; 12(4): 664-682, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36105162

RESUMEN

XueBiJing is an intravenous five-herb injection used to treat sepsis in China. The study aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)- or liquid chromatography-ultraviolet (LC-UV)-based assay for quality evaluation of XueBiJing. Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point calibrator for monitoring the various analytes in parallel. Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition, pharmacokinetics, and pharmacodynamics. A selectivity test (for "similarity of response") was developed to identify and minimize interference by non-target constituents. Then, an intercept test was developed to fulfill "linearity through zero" for each analyte (absolute ratio of intercept to C response, <2%). Using the newly developed assays, we analyzed samples from 33 batches of XueBiJing, manufactured over three years, and found small batch-to-batch variability in contents of the marker constituents (4.1%-14.8%), except for senkyunolide I (26.5%).

18.
Ecotoxicol Environ Saf ; 242: 113849, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809394

RESUMEN

Groundwater may contain radioactive substances which can be dangerous to human health. Concentrations of natural radionuclides polonium (Po), thorium (Th), uranium (U), and radium (Ra) isotopes were measured in groundwater samples collected from different locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in Carlsbad, New Mexico. The average values of gross activity concentrations of 210Po, 228Th, 238U, 234U, 226Ra and 228 Ra isotopes were determined to be 1.62 Bq L-1 in shallow groundwater and 5.88 Bq L-1 in deep groundwater, respectively. The total radioactivity in deep groundwater was higher than that in shallow groundwater, and most of the radioactivity in the water is from 226Ra. Furthermore, the effective doses for ingestion of natural radionuclides were about 0.333 mSv y-1 for shallow groundwater and about 1.338 mSv y-1 for deep groundwater samples, which are higher than the World Health Organization (WHO, 2017) guideline level (0.1 mSv y-1) for drinking water. Ra dominated the total ingestion dose, contributing 93.06 % and 75.40 % of the total effective doses to the deep and shallow groundwater, respectively. The ingrowth and decay of natural radionuclides suggested that 228Ra/226Ra ratio can be a useful indicator of the source of radioactive contamination. The radioactivity data obtained from the investigated groundwater samples can be used to establish a baseline for radioactivity levels in groundwater around the WIPP site.


Asunto(s)
Agua Subterránea , Polonio , Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Uranio , Contaminantes Radiactivos del Agua , Humanos , Polonio/análisis , Radioisótopos/análisis , Radio (Elemento)/análisis , Torio/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
19.
Poult Sci ; 101(7): 101939, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35691048

RESUMEN

The purpose of this experiment was to study the effects of fenugreek seed extract (FSE) on the growth performance, intestinal morphology, intestinal immunity and cecal micro-organisms in yellow-feathered broilers. A total of 240 one-day-old male yellow-feathered broilers were selected and randomly assigned to four treatments with 6 replicates per group and ten broilers per replicate. Started from the third day, birds were fed with basal diet (CON group) or basal diet supplemented with 30 mg/kg Zinc bacitracin (ZB group), or basal diet supplemented with 50 (D-FSE group) or 100 (H-FSE group) mg/kg FSE, respectively. The experiment lasted for 56 d. The results showed that dietary FSE supplementation improved average daily weight gain (ADG) and ratio of feed to weight gain (F: G) (P < 0.01), increased intestinal villus height (VH), villus height to crypt depth ratio (V/C) (P < 0.05), serum concentrations of IL-10, and the contents of secretory immunoglobulin A (sIgA) (P < 0.05), as well as decreased the activity of iNOS (P < 0.05). The high-throughput sequencing results showed that dietary FSE supplementation increased the alpha diversity of cecal microbes, and Firmicutes, Bacteroidetes, Verrucomicrobia and Proteobacteria taken up 95% of all phyla detected, FSE significantly reduced Campylobacter, Synergistes, and Lachnoclostridium abundance (P ≤ 0.05). There were significant difference in more than 30 KEGG pathways between FSE added group and control group or ZB group. FSE supplementation, in other words, maintained gut microbiota homeostasis while improving broiler growth performance. As a result, FSE has the potential to replace prophylactic antibiotic use in poultry production system.


Asunto(s)
Trigonella , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Masculino , Extractos Vegetales/farmacología , Aumento de Peso
20.
J Ethnopharmacol ; 296: 115431, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35700852

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Danhong injection (DHI), which is a Chinese clinical prescription consists of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese)(Plant names have been checked with http://www.theplantlist.org on March 1st, 2022), has been mainly used in the clinical therapy of cardiovascular diseases, including hypertension in China for many years. AIM OF THE STUDY: Cardiovascular diseases (CVDs) are the major causes of death all around the world. Due to the various stimulation, a series of vasoconstrictor substances are secreted to regulate the vasoconstriction function and then change blood pressure. The representative substances leading to abnormal vasoconstriction include renin-angiotensin system, endothelin, vasopressin and adrenaline, which act on the corresponding receptors on vascular smooth muscle to constrict blood vessels. Finally, blood pressure increases, followed by a series of cardiovascular diseases, including hypertension. However, little is known about Danhong injection's specific vasodilating mechanisms and active substances. The aims of the study were to determine the vasodilating substances of Danhong injection and explain its molecular mechanism of vasodilation. MATERIALS AND METHODS: The effects of DHI and its active components on vascular tension were measured by myograph system in the aortic or mesenteric rings of mice. Based on this, the pharmacodynamic substances were analyzed and effective molecules were found. Combined with multiple types of vascular myograph experiments and network pharmacological analysis, the molecular pathway was preliminarily determined. With molecular biology experiments, it was verified that the relevant mechanisms were closely related to calcium-mediated vasoconstriction in smooth muscle cells. RESULTS: DHI could relax endothelium-removed aortic rings pre-constricted with PE and 3 possible active vasodilator substances, including salvianolic acid A, salvianolic acid B and danshensu, were screened out by network pharmacology and vascular myograph experiments, among which the effects of salvianolic acid A were dominant. Meanwhile, salvianolic acid A could dilate mesenteric artery in a pressure-dependent manner. Interestingly, salvianolic acid A could still relax the vascular rings under the stimulation of KCl and Bayk8644, two agonists of L-type calcium channel. By contrast, inhibitors of Kir, Kv, Katp and BKCa channels did not block the effect of salvianolic acid A on vasodilation. Salvianolic acid A alleviated Ca2+ transient, referring to changes of intracellular calcium, induced by PE, Bayk8644 and high K+ in the VSMCs. Salvianolic acid A could partially restore the vasodilation function of vascular smooth muscle damaged by AngII and ET-1 induced hypertension situation. CONCLUSIONS: Our results indicate that salvianolic acid A is the major vasodilator substance in DHI and the vasorelaxation pharmacology mechanism involved in inhibiting the L-type calcium channel signaling in smooth muscle cell. Hence, there are potential therapeutic effects of taking salvianolic acid A preparation which may be beneficial to protect cardiovascular system and reduce blood pressure.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Salvia miltiorrhiza , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico , Animales , Arterias , Ácidos Cafeicos , Calcio/metabolismo , Canales de Calcio Tipo L , Medicamentos Herbarios Chinos , Lactatos , Ratones , Salvia miltiorrhiza/química , Vasodilatación , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA