Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 14(9)2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37761865

RESUMEN

Bamboos are perennial, arborescent, monocarpic and industrially important non-timber plants. They are important for various purposes, such as carbon sequestration, biodiversity support, construction, and food and fiber production. However, traditional vegetative propagation is insufficient for bamboo multiplication. Moreover, little is known about the mechanism of gold nanoparticles (AuNPs) in vitro proliferation and regulation of physiological and biochemical properties. In this study, we investigated the impacts of citrate and cetyltrimethylammonium bromide (CTAB) coated AuNPs on in vitro proliferation, photosynthetic pigment content and antioxidant potential of Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne. Various morpho-physiological and biochemical parameters were differentially affected along the citrate- and CTAB-coated AuNPs concentration gradients (200-600 µM). In vitro shoot proliferation, photosynthetic pigment content and antioxidant activities were higher in D. asper grown on Murashige and Skoog medium supplemented with 2 mg·L-1 benzyladenine and 400 µM citrate-coated AuNPs than in those grown on Murashige and Skoog medium supplemented with 600 µM CTAB- coated AuNPs. Identification of genes regulating in vitro D. asper proliferation will help understand the molecular regulation of AuNPs-mediated elicitation for modulating various physiological and biochemical activities during micropropagation. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified differentially expressed genes associated with in vitro modulation of AuNPs-regulated biological processes and molecular functions. The findings of this study provide new insight into AuNPs-mediated elicitation of in vitro mass scale bamboo propagation.


Asunto(s)
Oro , Nanopartículas del Metal , Antioxidantes/farmacología , Cetrimonio , Perfilación de la Expresión Génica , Citratos , Ácido Cítrico , Suplementos Dietéticos
2.
Plant Foods Hum Nutr ; 78(4): 630-642, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698772

RESUMEN

Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia. Graphical abstract of the review.


Asunto(s)
Cucumis , Enfermedades no Transmisibles , Humanos , Enfermedades no Transmisibles/tratamiento farmacológico , India , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/análisis
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834889

RESUMEN

Silver nanoparticles (AgNPs) were fabricated using Trigonella foenum-graceum L. leaf extract, belonging to the variety HM 425, as leaf extracts are a rich source of phytochemicals such as polyphenols, flavonoids, and sugars, which function as reducing, stabilizing, and capping agents in the reduction of silver ions to AgNPs. These phytochemicals were quantitatively determined in leaf extracts, and then, their ability to mediate AgNP biosynthesis was assessed. The optical, structural, and morphological properties of as-synthesized AgNPs were characterized using UV-visible spectroscopy, a particle size analyzer (PSA), FESEM (field emission scanning electron microscopy), HRTEM (high-resolution transmission electron microscopy), and FTIR (Fourier transform infrared spectroscopy). HRTEM analysis demonstrated the formation of spherically shaped AgNPs with a diameter of 4-22 nm. By using the well diffusion method, the antimicrobial potency of AgNPs and leaf extract was evaluated against microbial strains of Staphylococcus aureus, Xanthomonas spp., Macrophomina phaseolina, and Fusarium oxysporum. AgNPs showed significant antioxidant efficacy with IC50 = 426.25 µg/mL in comparison to leaf extract with IC50 = 432.50 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The AgNPs (64.36 mg AAE/g) demonstrated greater total antioxidant capacity using the phosphomolybdneum assay compared to the aqueous leaf extract (55.61 mg AAE/g) at a concentration of 1100 µg/mL. Based on these findings, AgNPs may indeed be useful for biomedical applications and drug delivery systems in the future.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Trigonella , Antioxidantes/química , Antibacterianos/química , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770623

RESUMEN

The aqueous Trigonella foenum-graecum L. leaf extract belonging to variety HM 444 was used as reducing agent for silver nanoparticles (AgNPs) synthesis. UV-Visible spectroscopy, Particle size analyser (PSA), Field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (FESEM-EDX) and High-resolution transmission electron microscopy (HRTEM) were used to characterize AgNPs. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Fourier Transform Infrared Spectroscopy (FTIR) was done to find out the possible phytochemicals responsible for stabilization and capping of the AgNPs. The produced AgNPs had an average particle size of 21 nm, were spherical in shape, and monodispersed. It showed catalytic degradation of Methylene blue (96.57%, 0.1665 ± 0.03 min-1), Methyl orange (71.45%, 0.1054 ± 0.002 min-1), and Rhodamine B (92.72%, 0.2004 ± 0.01 min-1). The produced AgNPs were excellent solid bio-based sensors because they were very sensitive to Hg2+ and Fe3+ metal ions with a detection limit of 11.17 µM and 195.24 µM, respectively. From the results obtained, it was suggested that aqueous leaf extract demonstrated a versatile and cost-effective method and should be utilized in future as green technology for the fabrication of nanoparticles.


Asunto(s)
Mercurio , Nanopartículas del Metal , Trigonella , Colorantes/metabolismo , Plata/química , Trigonella/química , Colorimetría , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Mercurio/metabolismo , Tecnología Química Verde/métodos , Extractos Vegetales/química , Difracción de Rayos X
5.
Front Plant Sci ; 12: 751846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058943

RESUMEN

Sinopodophyllum hexandrum is an endangered medicinal herb known for its bioactive lignan podophyllotoxin (PTOX), which is used for the preparation of anticancer drugs. In its natural habitat, S. hexandrum is exposed to a multitude of adversities, such as fluctuating temperatures, water deficit, and high UV radiations. Transcriptional regulation of genes, which is regulated by the condition-specific binding of transcriptional factors to precise motifs in the promoter region, underlines responses to an environmental cue. Therefore, analysis of promoter sequences could ascertain the spatio-temporal expression of genes and overall stress responses. Unavailability of genomic information does not permit such analysis in S. hexandrum, especially on regulation of PTOX pathway. Accordingly, this study describes isolation and in silico analysis of 5'-upstream regions of ShPLR (PINORESINOL-LARICIRESINOL REDUCTASE) and ShSLD (SECOISOLARICIRESINOL DEHYDROGENASE), the two key genes of the PTOX biosynthetic pathway. Data showed a range of motifs related to basal transcription, stress-responsive elements, such as those for drought, low temperature, and light, suggesting that the expression of these genes and resulting PTOX accumulation would be affected by, at least, these environmental cues. While the impact of temperature and light on PTOX accumulation is well studied, the effect of water deficit on the physiology of S. hexandrum and PTOX accumulation remains obscure. Given the presence of drought-responsive elements in the promoters of the key genes, the impact of water deficit on growth and development and PTOX accumulation was studied. The results showed decline in relative water content and net photosynthetic rate, and increase in relative electrolyte leakage with stress progression. Plants under stress exhibited a reduction in transpiration rate and chlorophyll content, with a gradual increase in osmoprotectant content. Besides, stressed plants showed an increase in the expression of genes involved in the phenylpropanoid pathway and PTOX biosynthesis, and an increase in PTOX accumulation. Upon re-watering, non-irrigated plants showed a significant improvement in biochemical and physiological parameters. Summarily, our results demonstrated the importance of osmoprotectants during water deficit and the revival capacity of the species from water deficit, wherein PTOX synthesis was also modulated. Moreover, isolated promoter sequences could be employed in genetic transformation to mediate the expression of stress-induced genes in other plant systems.

6.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302587

RESUMEN

The present study aimed to analyze the antioxidant and antimicrobial activity of anthocyanins extracted from colored wheat flour and wheat-grass juice against human pathogens. The total anthocyanin content and antioxidant potential in colored wheat flour and wheat-grass juice extracts were significantly higher than white flour and wheat-grass juice extracts. Ultra-performance liquid chromatography showed the maximum number of anthocyanin peaks in black wheat, with delphinidin-3-o-galactoside chloride, delphinidin-3-o-glucoside chloride, and cyanindin-3-o-glucoside chloride as the major contributors. Among flour extracts, maximum zones of inhibition against Staphylococcus aureus (MTCC 1934), Pseudomonas aeruginosa (MTCC 1434), Escherichia coli, and Candida albicans (MTCC 227) were produced by black flour extract, having the highest anthocyanin content. It exhibited a minimum microbicidal concentration (MMC) of 200 mg/mL against E. coli and C. albicans; and 100 and 150 mg/mL against S. aureus and P. aeruginosa, respectively. Black and purple flour extracts exhibited a minimum inhibitory concentration (MIC) of 50 mg/mL against S. aureus and P. aeruginosa. White flour extracts did not show MMC against E. coli and C. albicans. Among wheat-grass juice extracts, black wheat-grass was most effective and showed an MIC of 100-150 mg/mL against all pathogens. It exhibited an MMC of 200 mg/mL against S. aureus and P. aeruginosa. Hence, anthocyanin-rich colored wheat could be of nutraceutical importance.


Asunto(s)
Antocianinas/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Harina/análisis , Triticum/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología
7.
OMICS ; 24(10): 568-580, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32757981

RESUMEN

Although the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is wreaking havoc and resulting in mortality and morbidity across the planet, novel treatments are urgently needed. Drug repurposing offers an innovative approach in this context. We report here new findings on the in silico potential of several antimalarial drugs for repurposing against COVID-19. We conducted analyses by docking the compounds against two SARS-CoV-2-specific targets: (1) the receptor binding domain spike protein and (2) the main protease of the virus (MPro) using the Schrödinger software. Importantly, the docking analysis revealed that doxycycline (DOX) showed the most effective binding to the spike protein of SARS-CoV-2, whereas halofantrine and mefloquine bound effectively with the main protease among the antimalarial drugs evaluated in the present study. The in silico approach reported here suggested that DOX could potentially be a good candidate for repurposing for COVID-19. In contrast, to decipher the actual potential of DOX and halofantrine against COVID-19, further in vitro and in vivo studies are called for. Drug repurposing warrants consideration as a viable research and innovation avenue as planetary health efforts to fight the COVID-19 continue.


Asunto(s)
Antimaláricos/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos/métodos , Neumonía Viral/tratamiento farmacológico , Antimaláricos/química , Antivirales/química , Betacoronavirus/química , Sitios de Unión , COVID-19 , Simulación por Computador , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/efectos de los fármacos , Doxiciclina/química , Doxiciclina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
Crit Rev Biotechnol ; 40(4): 539-554, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32290728

RESUMEN

Buckwheat is a crop that has gained considerable interest worldwide due to its nutritional, economical, and pharmaceutical values. To ensure food and nutritional security in a scenario of global climate change, this pseudocereal is a competent alternative to staple crops. With rising knowledge regarding the nutraceutical potential, the popularity of this species is expected to increase further in coming years. The main bioactive component of this species is rutin that has been proven to have a wide range of health-promoting benefits. Due to breeding constraints, asynchronous maturity, seed shattering, and restricted distribution, this species holds the status of an underutilized or neglected crop in many parts of the world. In the North-western Himalayan zone, it is an integral part of local dietary intake and is grown as a second crop after harvesting barley and peas. Fagopyrum esculentum and F. tataricum are the species of buckwheat cultivated in the North-western Himalayas. However, more studies in the direction of conservation, utilization, and genetic amelioration of plant genetic resources are needed to sustain food security in Southeast Asia. The present review paper accentuates the multicore potential of buckwheat besides highlighting the commercial and pharmaceutical perspective. This article also focuses on the conservation and sustainable utilization of Himalayan gene pools, desirable agronomic traits, and genetic diversity besides focusing on the biochemical and molecular response of Fagopyrum to biotic and abiotic stress including modulation of the rutin content. The role of biotechnological interventions and future prospects are also summarized.


Asunto(s)
Suplementos Dietéticos , Fagopyrum , Asia Sudoriental , Productos Agrícolas , Fagopyrum/metabolismo , Fagopyrum/fisiología , Fitoquímicos/metabolismo , Regeneración , Rutina/metabolismo , Estrés Fisiológico
9.
Crit Rev Biotechnol ; 37(6): 739-753, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27644897

RESUMEN

Podophyllotoxin is an aryltetralin lignan synthesized in several plant species, which is used in chemotherapies for cancers and tumor treatment. More potent semisynthetic derivatives of podophyllotoxin such as etoposide and teniposide are being developed and evaluated for their efficacy. To meet the ever increasing pharmaceutical needs, species having podophyllotoxin are uprooted extensively leading to the endangered status of selective species mainly Sinopodophyllum hexandrum. This has necessitated bioprospection of podophyllotoxin from different plant species to escalate the strain on this endangered species. The conventional and non-conventional mode of propagation and bioprospection with the integration of biotechnological interventions could contribute to sustainable supply of podophyllotoxin from the available plant resources. This review article is focused on the understanding of different means of propagation, development of genomic information, and its implications for elucidating podophyllotoxin biosynthesis and metabolic engineering of pathways. In addition, various strategies for sustainable production of this valuable metabolite are also discussed, besides a critical evaluation of future challenges and opportunities for the commercialization of podophyllotoxin.


Asunto(s)
Biotecnología , Hongos , Podofilotoxina , Podophyllum
10.
BMC Genomics ; 15: 871, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25287271

RESUMEN

BACKGROUND: Sinopodophyllum hexandrum is an endangered medicinal herb, which is commonly present in elevations ranging between 2,400-4,500 m and is sensitive to temperature. Medicinal property of the species is attributed to the presence of podophyllotoxin in the rhizome tissue. The present work analyzed transcriptome of rhizome tissue of S. hexandrum exposed to 15°C and 25°C to understand the temperature mediated molecular responses including those associated with podophyllotoxin biosynthesis. RESULTS: Deep sequencing of transcriptome with an average coverage of 88.34X yielded 60,089 assembled transcript sequences representing 20,387 unique genes having homology to known genes. Fragments per kilobase of exon per million fragments mapped (FPKM) based expression analysis revealed genes related to growth and development were over-expressed at 15°C, whereas genes involved in stress response were over-expressed at 25°C. There was a decreasing trend of podophyllotoxin accumulation at 25°C; data was well supported by the expression of corresponding genes of the pathway. FPKM data was validated by quantitative real-time polymerase chain reaction data using a total of thirty four genes and a positive correlation between the two platforms of gene expression was obtained. Also, detailed analyses yielded cytochrome P450s, methyltransferases and glycosyltransferases which could be the potential candidate hitherto unidentified genes of podophyllotoxin biosynthesis pathway. CONCLUSIONS: The present work revealed temperature responsive transcriptome of S. hexandrum on Illumina platform. Data suggested expression of genes for growth and development and podophyllotoxin biosynthesis at 15°C, and prevalence of those associated with stress response at 25°C.


Asunto(s)
Berberidaceae/genética , Perfilación de la Expresión Génica , Rizoma/genética , Temperatura , Berberidaceae/citología , Berberidaceae/enzimología , Berberidaceae/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Podofilotoxina/biosíntesis , Rizoma/citología , Rizoma/enzimología , Rizoma/metabolismo , Análisis de Secuencia , Transducción de Señal/genética , Almidón/metabolismo , Factores de Transcripción/metabolismo
11.
Mol Biotechnol ; 52(1): 82-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22144070

RESUMEN

Tea, a beverage crop, is a rich source of polyphenols and polysaccharides which greatly attribute to its importance. However, oxidation and precipitation of these compounds during nucleic acids extraction is a limitation to molecular biology and genomic studies. On isolation of total RNA from root tissue using established protocols, difficulties were encountered in terms of purity and quantity of isolated RNA or some of the methods were time-consuming and also yields were low. The present communication combines a phenol-based RNA isolation protocol with a cetyltrimethylammonium bromide-based procedure with appropriate modifications. This protocol successfully isolated RNA from tap root tissue in 2-3 h as compared with 16 h reported by the previous method. Also, RNA yield was higher by more than fourfold. The RNA isolated by this protocol was successfully used for downstream applications such as RT-PCR and the construction of suppression subtractive hybridization library. The developed protocol worked well with other plant tissue with high polyphenols and polysaccharides contents.


Asunto(s)
Camellia sinensis/genética , Biología Molecular/métodos , Raíces de Plantas/genética , ARN de Planta/aislamiento & purificación , Té/química , Electroforesis en Gel de Agar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA