Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin J Nat Med ; 21(2): 113-126, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36871979

RESUMEN

Marsdenia tenacissima injection, a standard Marsdenia tenacissima extract (MTE), has been approved as an adjuvant therapeutic agent for various cancers. Our previous study showed that MTE inhibited the proliferation and metastasis of prostate cancer (PCa) cells. However, the underlying mechanisms and active ingredients of MTE against PCa were not completely understood. This study revealed that MTE induced significant decreases in cell viability and clonal growth in PCa cells. In addition, MTE induced the apoptosis of DU145 cells by reducing the mitochondrial membrane potential and increasing the expression of Cleaved Caspase 3/7, Cyt c, and Bax. In vivo, DU145 xenografted NOD-SCID mice treated with MTE showed significantly decreased tumor size. TUNEL staining and Western blot confirmed the pro-apoptotic effects of MTE. Network pharmacology analysis collected 196 ingredients of MTE linked to 655 potential targets, and 709 PCa-associated targets were retrieved, from which 149 overlapped targets were screened out. Pathway enrichment analysis showed that the HIF-1, PI3K-AKT, and ErbB signaling pathways were closely related to tumor apoptosis. Western blot results confirmed that MTE increased the expression of p-AKTSer473 and p-GSK3ßSer9, and decreased the expression of p-STAT3Tyr705in vitro and in vivo. A total of 13 compounds in MTE were identified by HPLC-CAD-QTOF-MS/MS and UPLC-QTOF-MS/MS. Molecular docking analysis indicated that six compounds may interact with AKT, GSK3ß, and STAT3. In conclusion, MTE induces the endogenous mitochondrial apoptosis of PCa by regulating the AKT/GSK3ß/STAT3 signaling axis, resulting in inhibition of PCa growth in vitro and in vivo.


Asunto(s)
Marsdenia , Neoplasias de la Próstata , Ratones , Animales , Masculino , Humanos , Ratones Endogámicos NOD , Ratones SCID , Proteínas Proto-Oncogénicas c-akt , Glucógeno Sintasa Quinasa 3 beta , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Espectrometría de Masas en Tándem , Apoptosis , Factor de Transcripción STAT3
2.
J Ethnopharmacol ; 295: 115381, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35595220

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Marsdenia tenacissima injection (MTE), a traditional Chinese medical injection extracted from the rattan of Marsdenia tenacissima (Roxb.) Moon, has been approved for clinical use in China as an adjuvant therapeutic agent in multiple cancers, including esophageal cancer, gastric cancer, lung cancer, and liver cancer. However, the activity and mechanism of MTE on prostate cancer (PCa) remain to be defined. AIM OF THE STUDY: To investigate the activity and the underlying mechanism of MTE in the treatment of PCa. MATERIALS AND METHODS: The component characterization of MTE was analyzed by HPLC-CAD-QTOF-MS/MS technology. Cell Counting Kit-8 (CCK-8) assay was used to assess PCa cell proliferation. Colony formation assay was applied to detect the clonogenic ability of the cells. MetaboAnalyst5.0 database was employed to analyze the altered metabolites of PC3 cells treated with MTE obtained by UPLC-QTOF-MS/MS. Combined with metabolomics analysis and network pharmacology, we predicted the potential targets, which further were verified by Western Blot, RT-qPCR, and Immunohistochemistry assays. Finally, SeeSAR software was applied to predict the potential active components of MTE against PCa. RESULTS: A total of 21 components in MTE were confirmed by HPLC-CAD-QTOF-MS/MS analysis. MTE inhibited the proliferation and colony formation of PCa cells. A total of 20 metabolites closely related to glycerophospholipid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle were significantly changed in PC3 cells treated with MTE. The network pharmacology analysis revealed that MTE suppressed the growth of PC3 cells might by regulating the ErbB2-GSK3ß-HIF1α signaling axis. Furthermore, we also confirmed that stimulation of MTE significantly inhibited the phosphorylation of ErbB2 at Tyr877 and the activities of its downstream signal transducers (GSK3ß and HIF1α) in PCa, as well as the mRNA levels of critical factors (IDH2, LDHA, and HIF1A) in the tricarboxylic acid (TCA) cycle. Molecular docking further suggested that Tenacissimoside E, cryptochlorogenic acid, and scopoletin might be the active ingredients of MTE for PCa treatment. CONCLUSION: This study proposed that MTE exerts a potential anti-tumor effect in PCa through inhibiting ErbB2-GSK3ß-HIF1α signaling axis, which may be related to the TCA cycle.


Asunto(s)
Neoplasias Pulmonares , Marsdenia , Neoplasias de la Próstata , Glucógeno Sintasa Quinasa 3 beta , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Marsdenia/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptor ErbB-2 , Espectrometría de Masas en Tándem , Ácidos Tricarboxílicos/uso terapéutico
3.
Chin Med ; 16(1): 99, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627325

RESUMEN

BACKGROUND: Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. METHODS: The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). RESULTS: LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. CONCLUSIONS: LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect.

4.
J Hazard Mater ; 402: 123781, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33254792

RESUMEN

A rapid and ultrasensitive method for colourimetric/photothermal dual-readout detection was developed using an 808 nm NIR laser and a thermal imaging app on mobile phone. Norfloxacin was used as a model contaminant to demonstrate this universal rapid detection method. It is innovatively, to use the advanced two-dimensional material black phosphorus as a colourimetric/photothermal reagent for the first time. The samples were added to the strip, and the analytes were selectively captured on the conjugate pad by monoclonal antibody-modified magnetic/upconversion nanocomposites. The samples flowed through the strips by capillary action until reaching the control line, where immune complex formation occurred due to the presence of secondary antibody. The added black phosphorus could be captured by the the antigens which were directly exposed to the test line and a brown band could be observed by naked eye. Upon illumination by NIR light for 1 min, the real-time temperature is obtained for quantitative analysis through the thermal imaging performed by mobile phone camera. This method can achieve the detection of norfloxacin in water samples within 20 min, and the detection limits of colorimetric and photothermal readout can reach 45 pg mL-1. Compared with conventional strips, this method provided an increased sensitivity by about two orders of magnitude, with a integrated portable laser and a mobile phone. It is a valuable method for rapid detection and can be applied to other environmental contaminants as well.


Asunto(s)
Colorimetría , Norfloxacino , Cromatografía de Afinidad , Límite de Detección , Fósforo , Ríos , Agua
5.
J Ethnopharmacol ; 260: 112989, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32526339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among the 56 nationalities in China. It is composed of three herbs, namely Centella asiatica (L.) Urb., Eclipta prostrata (L.) L., Smilax glabra Roxb. It has been widely used as health protection tea for many years to prevent cardiovascular and cerebrovascular diseases such as hyperlipidemia and hypertension. AIM OF THE STUDY: This study validated the lipid-lowering effect of LFG in a hyperlipidemia rat model. Then we employed network pharmacology and molecular biological approach to identify the active ingredients of LFG, corresponding targets, and its anti-hyperlipidemia mechanisms. MATERIALS AND METHODS: Hyperlipidemia rat model was established by feeding male Sprague-Dawley rats with high-fat diet for two weeks. LFG (two doses of 10 and 20 g/kg) was administered orally to hyperlipidemia rat model for 4 weeks, twice per day. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) were monitored in rats pre and post-treatment. Hematoxylin-eosin staining was applied to observe the pathology and lipid accumulation of liver. We then performed network pharmacology analysis to predict the ingredients, their associated targets, and hyperlipidemia associated targets. Pathway analysis with significant genes was carried out using KEGG pathway. These genes and proteins intersectioned between compound targets and hyperlipidemia targets were further verified with samples from hyperlipidemia rats treated with LFG using Real-time RT-PCR and Western Blot. RESULTS: LFG attenuated hyperlipidemia in rat model, and this was characterized with decreased serum levels of TC, LDL-C, liver wet weight, and liver index. LFG alleviated the hepatic steatosis in hyperlipidemia rats. Network pharmacology analysis identified 53 bioactive ingredients from LFG formula (three herbs), which link to 765 potential targets. 53 hyperlipidemia associated genes were retrieved from public databases. There were 10 common genes between ingredients-targets and hyperlipidemia associated genes, which linked to 20 bioactive ingredients. Among these 10 genes, 3 of them were validated to be involved in LFG's anti-hyperlipidemia effect using Real-time RT-PCR, namely ADRB2 encoding beta-2 adrenergic receptor, NOS3 encoding nitric oxide synthase 3, LDLR encoding low-density lipoprotein receptor. The cGMP-PKG signaling pathway was enriched for hyperlipidemia after pharmacology network analysis with ADRB2, NOS3, and LDLR. Interestingly, expression of cGMP-dependent protein kinase (PKG) was downregulated in hyperlipidemia rat after LFG treatment. Molecular docking study further supported that ferulic acid, histidine, p-hydroxybenzoic acid, and linalool were potential active ingredients for LFG's anti-hyperlipidemia effect. LC-MS/MS analysis confirmed that ferulic acid and p-hydroxybenzoic acid were active ingredients of LFG. CONCLUSION: LFG exhibited the lipid-lowering effect, which might be attributed to downregulating ADRB2 and NOS3, and upregulating LDLR through the cGMP-PKG signaling pathway in hyperlipidemia rat. Ferulic acid and p-hydroxybenzoic acid might be the underlying active ingredients which affect the potential targets for their anti-hyperlipidemia effect.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hiperlipidemias/tratamiento farmacológico , Animales , Centella/química , Cromatografía Liquida , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Eclipta/química , Hipolipemiantes/administración & dosificación , Hipolipemiantes/química , Hipolipemiantes/farmacología , Lípidos/sangre , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Smilax/química , Espectrometría de Masas en Tándem
6.
Int J Biol Macromol ; 154: 486-492, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135257

RESUMEN

The objective of the study was to explore the formation mechanism and thermodynamic properties of chitosan (CS)-potato protein isolate (PPI) complex under DHPM treatment. The transmission electron microscopic (TEM) results showed the formation of a complex between CS and PPI. Meanwhile, particle size and zeta-potential were shown to increase with increasing CS concentration, further confirming the formation of the complex. The surface hydrophobicity results showed CS was bound to PPI by hydrogen bond. The ultraviolet and fluorescence spectral analysis exhibited CS formed a protective mechanism against PPI destruction, preventing the exposure of tyrosine and tryptophan residues. Infrared spectrum and circular dichroism spectral analysis revealed no occurrence of chemical reaction between CS and PPI under DHPM treatment, further indicating that they are bound by hydrogen bond and hydrophobic interaction. Moreover, CS addition was shown to enhance the intermolecular interaction and promote the formation of intermolecular hydrogen bond network. Differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) revealed that CS addition could improve the thermal stability of PPI. These results have shed light on the formation mechanism and thermodynamic properties of the CS/PPI complex and facilitate its application in food industry.


Asunto(s)
Quitosano/química , Dispositivos Laboratorio en un Chip , Proteínas de Plantas/química , Presión , Solanum tuberosum/química , Industria de Alimentos , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie , Termodinámica
7.
Mol Immunol ; 114: 233-242, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31386980

RESUMEN

Mangiferin is the major bioactive ingredient in the leaves of Mangifera indica L., Aqueous extract of such leaves have been traditionally used as an indigenous remedy for respiratory diseases including cough and asthma in Traditional Chinese Medicine. Mangiferin was shown to exert its anti-asthmatic effect by modulating Th1/Th2 cytokines imbalance via STAT6 signaling pathway. However, compelling evidence indicated that subtypes of T helpers and regulatory T cells other than Th1/Th2 were also involved in the pathogenesis of asthma. In current study, we investigated the effects of mangiferin on the differentiation and function of Th9, Th17 and Treg cells in a chicken egg ovalbumin (OVA)-induced asthmatic mouse model. Mangiferin significantly attenuated the symptoms of asthma attacks, reduced the total number of leukocytes, EOS and goblet cells infiltration in lung. Simultaneously, treatment with mangiferin remarkably decreased the proportion of Th9 and Th17 cells; reduced the levels of IL-9, IL-17A; inhibited the expression of PU.1 and RORγt in lung. However, the proportion of Treg cells, the expression of IL-10, TGF-ß1 and Foxp3 were increased by mangiferin. Our data suggest that mangiferin exerted anti-asthmatic effect through decreasing Th9 and Th17 responses and increasing Treg response in OVA-induced asthmatic mouse model.


Asunto(s)
Asma/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Xantonas/inmunología , Animales , Antiasmáticos/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Hipersensibilidad al Huevo/inmunología , Femenino , Pulmón/inmunología , Mangifera , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Extractos Vegetales/inmunología , Transducción de Señal/inmunología , Células Th2/inmunología
8.
Mikrochim Acta ; 186(3): 151, 2019 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-30712105

RESUMEN

This study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17ß-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes. On complementary pairing, the BP-Au@T-cDNA quench the fluorescence of UCNPs@apts (measured at an excitation wavelength 808 nm and at main emission peaks at 545 nm and 805 nm.) Compared with single-stranded probes based on black phosphorus and gold, the dual-amplification strategy increases quenching efficiency by nearly 25%-30% and reduces capture time to 10 min. This is due to the higher optical absorption of 2D nanohybrid and the reduction of steric hindrance by T-cDNAs. Exposure to BPA or E2 cause the release of UCNPs@apts from the BP-Au@T-cDNAs due to stronger binding between aptamer and analyte. Hence, fluorescence recovers at 545 nm for BPA and 805 nm for E2. Based on these findings, a dually amplified aptamer assay was constructed that covers the 0.01 to 100 ng mL-1 BPA concentration range, and the 0.1 to 100 ng mL-1 E2 concentration range. The detection limits are 7.8 pg mL-1 and 92 pg mL-1, respectively. This method was applied to the simultaneous determination of BPA and E2 in spiked samples of water, food, serum and urine. Graphical abstract Schematic presentation of novel quenching probes designed by tetrahedron complementary DNAs oriented self-assembled on the surface of black phosphorus/gold nanohybrids. Combined with aptamer-modified upconversion nanoparticles, a dual-amplification self-assembled fluorescence nanoprobe was constructed for simultaneous detection of BPA and E2.


Asunto(s)
Aptámeros de Nucleótidos , Compuestos de Bencidrilo/análisis , Estradiol/análisis , Fluorescencia , Nanopartículas del Metal/química , Fenoles/análisis , Técnicas Biosensibles/métodos , ADN Complementario , Oro , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA