Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645986

RESUMEN

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Simulación del Acoplamiento Molecular , Farmacología en Red , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Animales , Ratones , Plantas Medicinales/química , Masculino , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Luteolina/farmacología , Luteolina/química , Ratones Endogámicos C57BL , Humanos
2.
J Hazard Mater ; 470: 134268, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608592

RESUMEN

Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 µg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.


Asunto(s)
Contaminación de Alimentos , Residuos de Plaguicidas , Zingiber officinale , Zingiber officinale/química , Residuos de Plaguicidas/análisis , Medición de Riesgo , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Humanos , Exposición Dietética/análisis
3.
Phytomedicine ; 129: 155566, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38565001

RESUMEN

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE: We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS: The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS: XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS: XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.

4.
J Ethnopharmacol ; 328: 118126, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556140

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Remielinización , Ratones , Animales , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroARNs/genética , Proteínas del Tejido Nervioso
5.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185392

RESUMEN

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Asunto(s)
Amoníaco , Gastrópodos , Animales , Dieta , Antioxidantes/metabolismo , Gastrópodos/metabolismo , Inmunidad Innata , Expresión Génica , Músculos/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Xantófilas
6.
CNS Neurosci Ther ; 30(3): e14231, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183394

RESUMEN

INTRODUCTION: Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS: A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS: Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION: This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dopamina , Humanos , Simulación del Acoplamiento Molecular , Dopamina/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Metabolómica
7.
Exp Ther Med ; 26(2): 380, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37456169

RESUMEN

Herbal medicine has been widely applied for a range of diseases in China since antiquity. Cassia obtusifolia L. and Cassia tora L. are plants whose seeds have high reported medicinal values and have been documented to function as a laxative, to lower lipid level and to lower blood pressure. The main active ingredient in Cassia seeds is aurantio-obtusin (AO), which is an anthraquinone monomer compound. Currently, AO is listed in China as a quality control index component of Cassia seeds. In clinical practice in China, AO is typically used to treat obesity, diabetes and its complications, non-alcoholic fatty liver disease and allergic reactions. In addition, AO has been reported to confer insecticidal activities and antimalarial effects. Previous studies have even suggested that AO is a potential therapeutic candidate for a variety of diseases with research value. Therefore, the present review summarizes and discuss the existing literature on AO to provide a review of its pharmacological activity and mechanism of action, with the aim of providing a basis for its development and utilization in a clinical setting.

8.
Pharm Biol ; 61(1): 1054-1064, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37416997

RESUMEN

CONTEXT: Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE: To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS: HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS: HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Chalcona , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo , Axones , Regeneración Nerviosa , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Quinonas/farmacología , Chalcona/farmacología , Metabolómica
9.
J Ethnopharmacol ; 317: 116823, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37348798

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herbal formula Xuefu Zhuyu decoction (XFZYD) is a classic formula in the category of invigorating blood circulation and resolving blood stasis. It has been proven to improve the neurological and ethological prognosis of traumatic brain injury. XFZYD promotes synaptic and axonal regeneration after traumatic brain injury, which is functionally modulated by the N6-methyladenosine (m6A) modification of RNA. However, the epigenetic effects of XFZYD on m6A modification remain unknown. AIM OF THE STUDY: To explore how XFZYD protects against traumatic brain injury induced by controlled cortical impact (CCI) injury by altering RNA m6A modification. MATERIALS AND METHODS: The modified neurological severity scoring and Morris water maze were performed to evaluate the neuroprotective effects of XFZYD for 14 days and screen the dose. Then, dot blot, western blotting, and methylated RNA immunoprecipitation sequencing (MeRIP-Seq) were used to explore changes in RNA m6A modification in the perilesional cortex. The Metascape platform was used to analyze the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway of the differential m6A-tagged genes. Furthermore, MeRIP-qPCR was conducted to quantify differences in the hub differential m6A modification gene brain-derived neurotrophic factor (Bdnf). RESULTS: XFZYD significantly ameliorated the neurological deficits, spatial learning, and memory impairments in rats post-CCI on day 14. XFZYD enhanced the m6A level, and the expression of METTL14 and YTHDC2 in the perilesional cortex of CCI rats. In all three groups, the 3'-untranslated regions and coding sequence were primarily enriched for m6A peaks. XFZYD reversed the increased proportion of 3'-untranslated regions, and the decreased proportion of coding sequence and 5'-untranslated regions post-CCI. Moreover, XFZYD markedly downregulated 41 elevated m6A-tagged transcripts and upregulated 119 decreased m6A-tagged transcripts following CCI. Gene ontology and KEGG pathway analysis revealed that XFZYD-regulated m6A-tagged transcripts were predominantly enriched in synapse assembly, synaptic plasticity, learning or memory, and MAPK signaling pathway. Then, the hub-regulated m6A-tagged gene BDNF was identified. Both the m6A methylation level and the protein level of BDNF were ascended by XFZYD treatment. CONCLUSION: XFZYD improves neurological deficits, spatial learning and memory impairments in rats post-TBI probably through increasing the expression of METTL14 and BDNF in the cortex. Our study highlights a novel post-transcriptional regulation mechanism mediated by herbal medicine for traumatic brain injury treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , ARN/uso terapéutico , Regiones no Traducidas
10.
Chin Med ; 18(1): 40, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069580

RESUMEN

BACKGROUND: The oral bioavailability and blood-brain barrier permeability of many herbal products are too low to explain the significant efficacy fully. Gut microbiota and liver can metabolize herbal ingredients to more absorbable forms. The current study aims to evaluate the ability of a novel biotransformation-integrated network pharmacology strategy to discover the therapeutic mechanisms of low-bioavailability herbal products in neurological diseases. METHODS: A study on the mechanisms of Astragaloside IV (ASIV) in treating intracerebral hemorrhage (ICH) was selected as an example. Firstly, the absorbed ASIV metabolites were collected by a literature search. Next, the ADMET properties and the ICH-associated targets of ASIV and its metabolites were compared. Finally, the biotransformation-increased targets and biological processes were screened out and verified by molecular docking, molecular dynamics simulation, and cell and animal experiments. RESULTS: The metabolites (3-epi-cycloastragenol and cycloastragenol) showed higher bioavailability and blood-brain barrier permeability than ASIV. Biotransformation added the targets ASIV in ICH, including PTK2, CDC42, CSF1R, and TNF. The increased targets were primarily enriched in microglia and involved in cell migration, proliferation, and inflammation. The computer simulations revealed that 3-epi-cycloastragenol bound CSF1R and cycloastragenol bound PTK2 and CDC42 stably. The In vivo and in vitro studies confirmed that the ASIV-derived metabolites suppressed CDC42 and CSF1R expression and inhibited microglia migration, proliferation, and TNF-α secretion. CONCLUSION: ASIV inhibits post-ICH microglia/macrophage proliferation and migration, probably through its transformed products to bind CDC42, PTK2, and CSF1R. The integrated strategy can be used to discover novel mechanisms of herbal products or traditional Chinses medicine in treating diseases.

11.
Chin Med ; 17(1): 110, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36109779

RESUMEN

BACKGROUND: Bi Zhong Xiao decoction (BZXD), a traditional Chinese herbal formula, has been used clinically for many years to treat rheumatoid arthritis (RA). Both clinical and experimental studies have revealed that BZXD is effective in treating RA, but the mechanism remains unclear. In this study, we aimed to explore the mechanism of efficacy of BZXD through transcriptomic analysis of lncRNA and mRNA. METHODS: The combination method of ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry was used to assess the quality of BZXD. The efficacy of BZXD in treating collagen-induced arthritis (CIA) was evaluated by clinical assessment, weight changes, hematoxylin-eosin and safranin o-fast green staining, and Micro-CT. Arraystar rat lncRNA-mRNA chip technology was used to determine the lncRNA and mRNA expression profiles of the Control, CIA and BZXD groups, and to screen gene expression profiles related to the curative effect of BZXD. A lncRNA-mRNA co-expression network was constructed for the therapeutic efficacy genes. Through GO function and KEGG pathway enrichment analysis, the biological functions and signaling pathways of therapeutic efficacy genes were determined. Based on fold change and functional annotation, key differentially expressed lncRNAs and mRNAs were selected for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. The functions of lncRNAs targeting mRNAs were verified in vitro. RESULTS: We demonstrated that BZXD could effectively reverse bone erosion. After BZXD treatment, up to 33 lncRNAs and 107 mRNAs differentially expressed genes were reversely regulated by BZXD. These differentially expressed lncRNAs are mainly involved in the biological process of the immune response and are closely related to the ECM-receptor interaction, MAPK signaling pathway, Focal adhesion, Ras signaling pathway, Antigen processing and presentation, and Chemokine signaling pathway. We identified four lncRNAs (uc.361-, ENSRNOT00000092834, ENSRNOT00000089244, ENSRNOT00000084631) and three mRNAs (Acvr2a, Cbx2, Morc4) as potential therapeutic targets for BZXD and their microarray data consistent with the RT-qPCR. In vitro experiments confirmed that silencing the lncRNAs ENSRNOT00000092834 and ENSRNOT00000084631 reversed the expression of target mRNAs. CONCLUSIONS: This study elucidates the possible mechanism of BZXD reversing bone erosion in CIA rats from the perspective of lncRNA and mRNA. To provide a basis and direction for further exploration of the mechanism of BZXD in treating RA.

12.
BMC Complement Med Ther ; 22(1): 186, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831853

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune inflammatory disease. Bi Zhong Xiao decoction (BZXD) performs multiple functions for rheumatoid arthritis (RA) treatment for decades. In this study, we aimed to study the protein alterations of BZXD in the early and late stages of RA. METHODS: Sprague-Dawley rats were randomly divided into the Control, collagen-induced arthritis (CIA) and BZXD groups. Clinical assessment, paw thickness, weight changes and serum inflammatory cytokine levels were used to evaluate anti-inflammatory effects. Histopathological tests were performed to assess the improvement of inflammation and synovial hyperplasia. Moreover, we analyzed the proteins profiling of synovial tissue samples with different time intervals after BZXD treatment by Isobaric Tag for Relative Absolute (ITRAQ) quantitative proteomics technology. To further explore the interrelationships among differentially expressed proteins (DEPs), we used DAVID Bioinformatics Resources v6.8 and STRING 11.0 for bioinformatics analysis. Besides, the western blot and immunohistochemistry were exerted to verify related proteins. RESULTS: In our study, BZXD ameliorated joint inflammation, and suppressed the pathological changes in arthrosis of CIA rats. The proteomic analysis demonstrated that CIA rats were mainly involved in two significant pathways (the focal adhesion and the ECM-receptor interaction) in the early stage. BZXD down-regulated the expression of proteins involved in these pathways, such as CAV1, CHAD, COL3A1, COL5A2, COL6A1, and COL6A5. Additionally, BZXD exerts anti-inflammatory effects in the late stage mainly by increasing the expression of FASN and affecting fatty acid metabolism. CONCLUSION: BZXD exerts therapeutic effects on RA through multi-pathways in the early and late stages. This work may provide proteomic clues for treating RA by BZXD.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Antiinflamatorios , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Proteómica , Ratas , Ratas Sprague-Dawley
13.
Zhongguo Gu Shang ; 34(12): 1158-64, 2021 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-34965635

RESUMEN

OBJECTIVE: To explore the clinical efficacy of focused extracorporeal shock wave therapy with centrifugal exercise in the treatment of greater trochanteric pain syndrome. METHODS: From September 2017 to June 2019, 53 eligible cases of greater trochanteric pain syndrome were randomly divided into observation group (29 cases) and control group (24 cases). In observation group, there were 8 males and 21 females, aged from 38 to 62 years old with an average of (49.96±6.39) years old; the course of disease ranged from 6 to 13 months with an average of (8.58±1.99) months;treated with focused extracorporeal shock wave therapy with centrifugal exercise. In control group, there were 5 males and 19 females, aged from 39 to 62 years old with an average of (52.79±5.86) years old;the course of disease ranged from 6 to 14 months with an average of (9.04±2.51) months;treated with centrifugal exercise alone. Visual analogue scale (VAS) and hip Harris score were measured before ESWT treatment and at 1, 2, and 6 months to evaluate relieve degree of pain and functional recovery of hip joint, respectively. RESULTS: At 1 month after treatment, there were no significant differences in VAS, hip Harris score and treatment success rate (all P>0.05). At 2 months after treatment, VAS score in observation group (3.20±0.81) was lower than that of control group (3.87±0.61, P=0.002), there were no significant differences in hip Harris score score between observation group (81.93±2.43) and control group (82.12±2.34, P=0.770), the treatment success rate in observation group (58.62%, 17 / 29) was higher than that of control group (29.16%, 7 / 24) (P=0.032). At 6 months after treatment, VAS score in observationgroup (2.24±0.68) was lower than that of control group (3.12±0.53, P<0.001), hip Harris score score in observation group(85.10±1.75) was higher than that of control group (83.66±1.78)(P=0.005), there were no significant differences in treatment success rate between observation group (82.75%, 24 / 29) and control group (62.50%, 15 / 24)(P=0.096). CONCLUSION: In treatment of greater trochanteric pain syndrome, focused extracorporeal shock wave therapy with centrifugal exercise could significantly relieve symptoms of lateral hip pain, improve functional recovery of hip joint with good safety. This treatment strategy is worthy of application and promotion in clinical practice.


Asunto(s)
Bursitis , Tratamiento con Ondas de Choque Extracorpóreas , Adulto , Artralgia , Femenino , Cadera , Articulación de la Cadera , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
14.
Artículo en Inglés | MEDLINE | ID: mdl-34394386

RESUMEN

BACKGROUND: Infertility affects approximately 15% of couples around the world, and male factors are accounted for 40-50%. Oligoasthenozoospermia is the most common reason for male infertility. Unfortunately, effective drug therapy is still lacking except for assisted reproductive technology (ART). Previous researchers found that Wuzi Ershen decoction (WZESD) can increase sperm count, enhance sperm vitality, and improve semen quality. However, the pharmacological mechanisms remain unclear. METHODS: In this study, we screened compounds and predicted the targets of WZESD based on the TCMSP and BATMAN-TCM database combined with literature searching in the PubMed database. We obtained proteins related to oligoasthenozoospermia through GeneCards and submitted them to STRING to obtain the protein-protein interaction (PPI) network. Potential targets of WZESD were mapped to the network, and the hub targets were screened by topology. We used online platform Metascape and Enrichr for GO and KEGG enrichment analyses. AutoDock Vina was utilized for further verification of the binding mode between compounds and targets. RESULTS: Totally, 276 bioactive compounds were obtained and targeted 681 proteins. 446 oligoasthenozoospermia disease-specific proteins were acquired, and further bioinformatics analysis found that they were mainly involved in the formation of gametes, meiosis, and sperm differentiation. Protein interaction network analysis revealed that target proteins of WZESD were associated with oligoasthenozoospermia disease-specific proteins. The 79 targets of disease-specific proteins, which were anchored by WZESD, mainly participate in the cellular response to the organic cyclic compound, regulation of the apoptotic process, nitricoxide biosynthetic and metabolic process, oxidative stress, and protein phosphorylation regulation, which are the causes for oligoasthenozoospermia. Molecular docking simulation further validated that bioactive compounds originated from WZESD with targeted proteins showed high binding efficiency. CONCLUSIONS: This study uncovers the therapeutic mechanisms of WZESD for oligoasthenozoospermia treatment from the perspective of network pharmacology and may provide a valuable reference for further experimental research studies and clinical applications.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(2): 328-332, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33812395

RESUMEN

OBJECTIVE: To explore the regulation effect of myeloid leukemia No.1 Chinese herb medicine prescription combined with chemotherapy on Th17 cells in bone marrow fluid of AML patients, so as to provide guidance for improving AML treatment effect and patients' long-term survival. METHODS: Seventy patients with AML who were hospitalized in Department of Hematology, Wuwei People's Hospital from April 2017 to August 2019 were selected and enrolled in AML group, 25 healthy volunteers were selected and enrolled in control group; then according to therapeutic regimen, AML patients were divided into 2 groups: combined therapy group (myeloid leukemia NO.1 Chinese herb medicine prescription combined with chemotherapy) and non-combined therapy group (chemotherapy alone). Flow cytometry was used to detect the ratio of CD3+ CD161+ IL-17+ IFN-γ+ T cells in bone marrow fluid, and ELISA was used to detect the vascular endothelial growth factor (VEGF) and interleukin-17 (IL-17) concentrations in bone marrow fluid. Statistical analysis was performed on the data with SPSS 22.0. RESULTS: The ratio of CD3+ CD161+ IL-17+ IFN-γ+ T cells, VEGF and IL-17 concentration in newly diagnosed and relapsed AML patients were significantly higher than those in the normal control group (P<0.001); while those in CR and DFS stage patients were significantly lower than those in newly diagnosed and relapsed patients (P<0.001), and the ratio of CD3+ CD161+ IL-17+ IFN-γ+ T cells, VEGF and IL-17 concentration in DFS patients with AML were not significantly different from those in the control group (P>0.05). The ratio of CD3+ CD161+ IL-17+ IFN-γ+ T cells, VEGF and IL-17 concentration in CR stage of AML patients treated with chemotherapy alone were significantly higher than those in the control group (P<0.05), but there was no difference between combined therapy group and the control group; the ratio of CD3+ CD161+ IL-17+ IFN-γ+ T cells, the concentration of VEGF and IL-17 in CR stage of AML patients treated with chemotherapy alone were higher than those of patients treated with combined therapy regimen (P<0.05). AML patients treated with combined therapy regimen had a significantly higher complete remission rate compared with patients received chemotherapy alone (P<0.05), but the recurrence rate was significantly lower (P<0.05). CONCLUSION: Th17 cells expression in bone marrow of newly diagnoses and relapsed AML patients significantly increase, and decrease significantly after treatment. Myeloid leukemia No.1 Chinese herb prescription combined with chemotherapy can significantly increase the CR rate and reduce the RL rate for AML.


Asunto(s)
Leucemia Mieloide Aguda , Medicina , Médula Ósea , China , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Prescripciones , Células Th17 , Factor A de Crecimiento Endotelial Vascular
16.
Pacing Clin Electrophysiol ; 44(3): 462-471, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33433929

RESUMEN

BACKGROUND: Epicardial to endocardial breakthrough (EEB) exists widely in atrial arrhythmia and is a cause for intractable cavotricuspid isthmus (CTI)-dependent atrial flutter (AFL). This study aimed to investigate the electrophysiological features of EEB in EEB-related CTI dependent AFL. METHODS: Six patients with EEB-related CTI-dependent AFL were identified among 142 consecutive patients who underwent CTI-dependent AFL catheter ablation with an ultra-high-density, high-resolution mapping system in three institutions. Activation maps and ablation procedure were analyzed. RESULTS: A total of seven EEBs were found in six patients. Four EEBs (including three at the right atrial septum and one in paraseptal isthmus) were recorded in three patients during tachycardia. The other three EEBs were identified at the inferolateral right atrium (RA) during pacing from the coronary sinus. The conduction characteristics through the EEB-mediated structures were evaluated in three patients. Two patients only showed unidirectional conduction. Activation maps indicated that CTI-dependent AFL with EEB at the atrial septum was actually bi-atrial macro-reentrant atrial tachycardia (BiAT). Intensive ablation at the central isthmus could block CTI bidirectionally in four cases. However, ablation targeted at the inferolateral RA EEB was required in two cases. Meanwhile, local potentials at the EEB location gradually split into two components with a change in activation sequence. CONCLUSIONS: EEB is an underlying cause for intractable CTI-dependent AFL. EEB-mediated structure might show unidirectional conduction. CTI-dependent AFL with EEB at the atrial septum may represent BiAT. Intensive ablation targeting the central isthmus or EEB at the inferolateral RA could block the CTI bidirectionally.


Asunto(s)
Aleteo Atrial/fisiopatología , Aleteo Atrial/cirugía , Ablación por Catéter/métodos , Endocardio/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Adulto , Anciano , Técnicas Electrofisiológicas Cardíacas , Mapeo Epicárdico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Válvula Tricúspide/fisiopatología , Válvula Tricúspide/cirugía
17.
Front Pharmacol ; 12: 791097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111057

RESUMEN

Background: Chaihu-Shugan-San is a classical prescription to treat depression. According to the traditional Chinese medicine (TCM) principle, the 2 decomposed recipes in Chaihu-Shugan-San exert synergistic effects, including Shu Gan (stagnated Gan-Qi dispersion) and Rou Gan (Gan nourishment to alleviate pain). However, the specific mechanism of Chaihu-Shugan-San on depression and its compatibility rule remain to be explored. Objective: We aimed to explore the anti-depression mechanisms and analyze the advantage of TCM compatibility of Chaihu-Shugan-San. Methods: The chronic unpredictable mild stress (CUMS) rat model was established. Antidepressant effects were evaluated by sucrose preference test (SPT), and forced swimming test (FST). Tandem Mass Tag (TMT)-based quantitative proteomics of the hippocampus was used to obtain differentially expressed proteins (DEPs). Bioinformatics analysis including Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) networks was utilized to study the DEPs connections. At last, the achieved key targets were verified by western blotting. Results: Chaihu-Shugan-San increased weight gain and food intake, as well as exhibited better therapeutic effects including enhanced sucrose preference and extended immobility time when compared with its decomposed recipes. Proteomics showed Chaihu-Shugan-San, Shu Gan, and Rou Gan regulated 110, 12, and 407 DEPs, respectively. Compared with Shu Gan or Rou Gan alone, the expression of 22 proteins was additionally changed by Chaihu-Shugan-San treatment, whereas the expression of 323 proteins whose expression was changed by Shu Gan or Rou Gan alone were not changed by Chaihu-Shugan-San treatment. Bioinformatics analysis demonstrated that Chaihu-Shugan-San affected neurotransmitter's release and transmission cycle (e.g., γ-aminobutyric acid (GABA), glutamate, serotonin, norepinephrine, dopamine, and acetylcholine). GABA release pathway is also targeted by the 22 DEPs. Unexpectedly, only 2 pathways were enriched by the 323 DEPs: Metabolism and Cellular responses to external stimuli. Lastly, the expression of Gad2, Vamp2, and Pde2a was verified by western blotting. Conclusions: Chaihu-Shugan-San treats depression via multiple targets and pathways, which may include regulations of 110 DEPs and some neurotransmitter's transmission cycle. Compared with Shu Gan and Rou Gan, the 22 Chaihu-Shugan-San advanced proteins and the affected GABA pathway may be the advantages of Chaihu-Shugan-San compatibility. This research offers data and theory support for the clinical application of Chaihu-Shugan-San.

18.
Artículo en Chino | WPRIM | ID: wpr-880077

RESUMEN

OBJECTIVE@#To explore the regulation effect of myeloid leukemia No.1 Chinese herb medicine prescription combined with chemotherapy on Th17 cells in bone marrow fluid of AML patients, so as to provide guidance for improving AML treatment effect and patients' long-term survival.@*METHODS@#Seventy patients with AML who were hospitalized in Department of Hematology, Wuwei People's Hospital from April 2017 to August 2019 were selected and enrolled in AML group, 25 healthy volunteers were selected and enrolled in control group; then according to therapeutic regimen, AML patients were divided into 2 groups: combined therapy group (myeloid leukemia NO.1 Chinese herb medicine prescription combined with chemotherapy) and non-combined therapy group (chemotherapy alone). Flow cytometry was used to detect the ratio of CD3@*RESULTS@#The ratio of CD3@*CONCLUSION@#Th17 cells expression in bone marrow of newly diagnoses and relapsed AML patients significantly increase, and decrease significantly after treatment. Myeloid leukemia No.1 Chinese herb prescription combined with chemotherapy can significantly increase the CR rate and reduce the RL rate for AML.


Asunto(s)
Humanos , Médula Ósea , China , Leucemia Mieloide Aguda/tratamiento farmacológico , Medicina , Prescripciones , Células Th17 , Factor A de Crecimiento Endotelial Vascular
19.
J Agric Food Chem ; 68(51): 15164-15175, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315401

RESUMEN

Ononin is a bioactive isoflavone of legumes. To explore the "effective forms" of ononin, its metabolites were characterized using HPLC-ESI-IT-TOF-MSn after oral administration to rats. Metabolites (106), including 94 new metabolites, were characterized, which contained 17 phase I, 23 hydroxylated and methylated, 54 sulfated, 10 glucuronidated, and 2 sulfated and glucuronidated metabolites. Six hydroxylated metabolites of formononetin (aglycone of ononin) were simultaneously detected for the first time. Twenty-three hydroxylated and methylated metabolites were the new metabolites of ononin, and the number of hydroxylation and methylation was 1-3 and 1-2. Twenty metabolites have ononin-related bioactivities, and many metabolites have the same bioactivities. Their probable mechanisms of action may be additive and/or synergistic effects, especially because of the addition of the blood concentrations of these compounds. The results provide a foundation for a better understanding of the "effective forms" of ononin.


Asunto(s)
Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Glucósidos/química , Glucósidos/metabolismo , Isoflavonas/química , Isoflavonas/metabolismo , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Glucósidos/administración & dosificación , Isoflavonas/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
20.
Environ Sci Technol ; 54(22): 14740-14749, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33151663

RESUMEN

The deactivation of selective catalytic reduction (SCR) catalysts by arsenic is a serious problem for NH3-SCR. However, it is tough to design catalysts with good resistance to arsenic compared to other poisons such as alkali metal, SO2, etc., because As not only deteriorates surface acidity but also redox property, causing excessive N2O generation. A novel CeO2-WO3-Al2O3 catalyst is developed with excellent arsenic resistance in this study, which presents only less than 10% activity loss compared to nearly 40% loss for CeO2-WO3 with same arsenic loading (As: 2.1 wt %). Moreover, a significant negative impact on the N2O generation for poisoning catalysts from 26.7 to 7.5 ppm has also been found. The characterization results demonstrated that the interaction between cerium and arsenic lead to Lewis acid sites and oxygen vacancies loss as well as unexpected oxidation sites formation. However, the introduction of Al weakens the deactivation effect by replacing cerium to interact with arsenic. Three aspects are proposed for obtaining excellent arsenic-resistant performance: (1) the protection of Lewis acid sites, (2) release of oxygen vacancies from As restriction, and (3) confinement of As5+ oxidizing capacity. This study may provide an effective strategy to design and develop novel virtuous antipoisoning catalysts.


Asunto(s)
Arsénico , Cerio , Óxido de Aluminio , Amoníaco , Catálisis , Oxidación-Reducción , Tungsteno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA