Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Data Brief ; 52: 110002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226039

RESUMEN

Pistacia chinensis and Pistacia weinmannifolia are small trees and are distributed in East Asia, in particular China. The data on P. chinensis presented in this article is associated with the research article, "DOI: 10.5010/JPB.2019.46.4.274" [1]. Both P. chinensis and P. weinmannifolia have long been used as ethnobotanical plants to treat various illnesses, including dysentery, inflammatory swelling, rheumatism, liver diseases, influenza, lung cancer, etc. Many studies have been carried out to delve into the pharmaceutical properties of these Pistacia species using plant extracts, but genomic studies are very rarely performed to date. To enrich the genetic information of these two species, RNA sequencing was conducted using a pair-end Illumina HiSeq2500 sequencing system, resulting in 2.6 G of raw data from P. chinensis (Accession no: SRR10136265) and 2.7 G bases from P. weinmannifolia (Accession no: SRR10136264). Transcriptome shotgun assembly using three different assembly tools generated a total of 18,524 non-redundant contigs (N50, 1104 bp) from P. chinensis and 18,956 from P. weinmannifolia (N50, 1137 bp). The data is accessible at NCBI BioProject: PRJNA566127. These data would be crucial for the identification of genes associated with the compounds exerting pharmaceutical properties and also for molecular marker development.

2.
J Ethnopharmacol ; 303: 116053, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529247

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a potentially harmful chronic liver disease caused by various etiologies. There is currently no specific drug for liver fibrosis. Xiaochaihu Tang (XCHT) is a traditional formula combined of seven herbs, which was first recorded in the Treatise on Febrile Diseases in Han Dynasty of ancient China. It is widely used in clinic to hepatic protection, analgesic, antipyretic and anti-inflammatory treatment. And it has been recommended for treating chronic hepatitis and chronic cholecystitis in the latest guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional and western medicine. However, the underlying regulatory mechanisms remain elusive. AIM OF THE STUDY: This study aims to explore the therapeutic effects of XCHT on liver fibrosis and its underlying molecular mechanisms from the perspective of network pharmacology and experimental research. MATERIALS AND METHODS: Carbon tetrachloride (CCl4) induced and bile duct ligation (BDL) induced liver fibrosis models in mice were established to evaluate the anti-fibrosis effects of XCHT in vivo. Potential anti-fibrosis targets of XCHT were screened via network establishment. The underlying mechanisms were uncovered through GO and pathway enrichment analysis. Then, the core targets were identified from protein-protein interaction network by means of the Cytohubba plug-in of Cytoscape. Furthermore, two effective monomer components of XCHT were recognized by molecular docking. Moreover, the predicted components and pathways were verified by in vitro experiments. RESULTS: When treated with XCHT, liver fibrosis was alleviated in both mice models, showing as the improvement of liver function, the protection of hepatocytes, the inhibition of HSC activation and the reduction of hepatic collagen accumulation. 540 monomer components, 300 therapeutic targets, 109 signaling pathways, 246 GO biological processes, 77 GO cellular components, 107 GO molecular functions items and core targets were identified by network analysis. Then, 6-gingerol and baicalein were identified as the core components of anti-fibrosis effects of XCHT via leptin or Nrf2 signaling pathway. Furthermore, the experiment in vitro also validated the results. CONCLUSIONS: Our study suggests XCHT could alleviate liver fibrosis through multi-targets and multi-pathways; 6-gingerol and baicalein are its core components which may play an important role via leptin or Nrf2 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Leptina , Animales , Ratones , Simulación del Acoplamiento Molecular , Farmacología en Red , Factor 2 Relacionado con NF-E2 , Cirrosis Hepática/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
3.
BMC Complement Med Ther ; 21(1): 280, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758822

RESUMEN

BACKGROUND: Garcinia subelliptica Merr. is a multipurpose coastal tree, the potential medicinal effects of which have been studied, including cancer suppression. Here, we present evidence that the ethanol extract of G. subelliptica Merr. (eGSM) induces autophagy in human lung adenocarcinoma cells. METHODS: Two different human lung adenocarcinoma cell lines, A549 and SNU2292, were treated with varying amounts of eGSM. Cytotoxicity elicited by eGSM was assessed by MTT assay and PARP degradation. Autophagy in A549 and SNU2292 was determined by western blotting for AMPK, mTOR, ULK1, and LC3. Genetic deletion of AMPKα in HEK293 cells was carried out by CRISPR. RESULTS: eGSM elicited cytotoxicity, but not apoptosis, in A549 and SNU2292 cells. eGSM increased LC3-II production in both A549 and, more extensively, SNU2292, suggesting that eGSM induces autophagy. In A549, eGSM activated AMPK, an essential autophagy activator, but not suppressed mTOR, an autophagy blocker, suggesting that eGSM induces autophagy by primarily activating the AMPK pathway in A549. By contrast, eGSM suppressed mTOR activity without activating AMPK in SNU2292, suggesting that eGSM induces autophagy by mainly suppressing mTOR in SNU2292. In HEK293 cells lacking AMPKα expression, eGSM increased LC3-II production, confirming that the autophagy induced by eGSM can occur without the AMPK pathway. CONCLUSION: Our findings suggest that eGSM induces autophagy by activating AMPK or suppressing mTOR pathways, depending on cell types.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Autofagia/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Garcinia , Humanos , Hojas de la Planta , República de Corea , Serina-Treonina Quinasas TOR/metabolismo
4.
Phytother Res ; 35(5): 2773-2784, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33455039

RESUMEN

Adult neurogenesis plays a vital role in maintaining cognitive functions in mammals and human beings. Mobilization of hippocampal neurogenesis has been regarded as a promising therapeutic approach to restore injured neurons in neurodegenerative diseases including Alzheimer's disease (AD). Icarisid II (ICS II), an active ingredient derived from Epimedii Folium, has been reported to exhibit multiple neuroprotective effects. In the present study, we investigated the effects of ICS II on the proliferation and differentiation of neural stem cells (NSCs) and amyloid precusor protein (APP)-overexpressing NSCs (APP-NSCs) in vitro. Our results demonstrated that ICS II dose-dependently suppressed apoptosis and elevated viability of APP-NSCs. ICS II (1 µM) potently promoted proliferation and neuronal differentiation of NSCs and APP-NSCs. ICS II (1 µM) significantly upregulated Wnt-3a expression, increased the phosphorylation of glycogen synthase kinase-3ß and enhanced the nuclear transfer of ß-catenin. Moreover, ICS II also promoted astrocytes to secrete Wnt-3a, which positively modulates Wnt/ß-catenin signaling pathway. These findings demonstrate that ICS II promotes NSCs proliferation and neuronal differentiation partly by activating the Wnt/ß-catenin signaling pathway.

5.
Nat Prod Bioprospect ; 11(1): 127-135, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33389714

RESUMEN

Alstonia scholaris could be used as a traditional medicinal plant in China for the treatment of acute respiratory, which might be caused by respiratory tract infections. The investigation tested the anti-infective effects of total alkaloids extract (TA) from leaves of A. scholaris, and as a result, TA inhibited herpes simplex virus type 1 (HSV-1), respiratory syncytial virus (RSV) and influenza A virus (H1N1) in vitro respectively. In addition, the survival days of mice were prolonged, and the lung weights and mortality of mice were decreased significantly, after oral administrated TA in H1N1 and beta-hemolytic streptococcus infectious models in vivo respectively. The finding supported partly the traditional usage of A. scholaris in the treatment of respiratory infections.

6.
Am J Chin Med ; 48(8): 1895-1913, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33308098

RESUMEN

Olea europaea is a beneficial edible plant with a number of biological activities like anti-inflammatory, anti-oxidant, antithrombic, antihyperglycemic, and anti-ischemic activities. The mechanisms behind the antiphotoaging and anti-inflammatory effects of Olea europaea are not fully understood. To investigate how an ethanol extract of Olea europaea (Oe-EE) exerts these effects, we explored its activities in human keratinocytes and dermal fibroblasts. We assessed the anti-oxidant effects of Oe-EE via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2[Formula: see text]-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays and measured the expression levels of matrix metalloproteinases (MMPs), cyclooxygenase-2, interleukin (IL)-6, tumor necrosis factor (TNF)-[Formula: see text], and moisturizing factors. Antiphotoaging and anti-inflammatory mechanisms of Oe-EE were explored by assessing signaling molecule activation via immunoblotting. Oe-EE treatment decreased the mRNA expression level of MMPs, cyclooxygenase-2, IL-6, and TNF-[Formula: see text] and restored type I collagen, filaggrin, and sirtuin 1 expression in UVB-irradiated cells. Furthermore, Oe-EE inhibited the activities of several activator protein 1 regulatory enzymes, including extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), and inhibited nuclear factor (NF)-[Formula: see text]B pathway signaling proteins. Therefore, our results indicate that Oe-EE has photoaging-protective and anti-inflammatory effects.


Asunto(s)
Antiinflamatorios , FN-kappa B/metabolismo , Olea/química , Extractos Vegetales/farmacología , Protectores contra Radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción AP-1/metabolismo , Antioxidantes , Dermis/citología , Fibroblastos/metabolismo , Proteínas Filagrina , Células HaCaT , Humanos , Queratinocitos/metabolismo , Extractos Vegetales/aislamiento & purificación , Rayos Ultravioleta/efectos adversos
7.
Biomolecules ; 10(5)2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397672

RESUMEN

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Etanol/química , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Rosaceae/química , Familia-src Quinasas/antagonistas & inhibidores , Animales , Gastritis/tratamiento farmacológico , Gastritis/metabolismo , Gastritis/patología , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Biológicos , Óxido Nítrico/biosíntesis , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Familia-src Quinasas/metabolismo
8.
Biomolecules ; 10(4)2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331432

RESUMEN

Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.


Asunto(s)
Antiinflamatorios/farmacología , Etanol/química , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Potentilla/química , Familia-src Quinasas/antagonistas & inhibidores , Enfermedad Aguda , Animales , Gastritis/patología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Biológicos , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Familia-src Quinasas/metabolismo
9.
Phytother Res ; 34(6): 1347-1357, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31908073

RESUMEN

Prunus cerasoides (PC) products contain relatively high levels of flavones and isoflavones and may be potential sources of phytoestrogens for postmenopausal symptom relief. We assessed the PC extract (PCE) and its representative constituents in vitro with assays for estrogen receptor alpha binding, estrogen response element transcriptional activity, cell proliferation, and gene expression changes for pS2 in MCF-7 cells. PCE and its compounds showed strong estrogen receptor binding affinities and estrogen response element induction. A previously undescribed compound (designated as compound 18), now identified as being gentisic acid, 5-O-ß-D-(6'-O-trans-4-coumaroyl)-glucopyranoside, also showed potent estrogenic properties and induced proliferation of MCF-7 cells. PCE was evaluated for its in vivo uterotrophic effects in immature female rats as well as for its lipid lowering effects in estrogen-deprived animals. For ovariectomized rats and aged female mice, PCE-treated groups had lower plasma triglyceride levels compared with control and, for the same comparison, had reduced serum levels of liver stress/damage markers. Our results point to strong estrogenic activities and beneficial metabolic effects for PCE, with properties that put PC and its extracts as promising sources of phytoestrogens for symptom relief in menopausal and postmenopausal cases.


Asunto(s)
Estrógenos/uso terapéutico , Extractos Vegetales/química , Prunus/química , Animales , Modelos Animales de Enfermedad , Estrógenos/farmacología , Femenino , Humanos , Células MCF-7/metabolismo , Ratones , Roedores
10.
Nutrients ; 11(11)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717518

RESUMEN

Osteoporosis is characterized by low bone density and quality with high risk of bone fracture. Here, we investigated anti-osteoporotic effects of natural plants (Lycii Radicis Cortex (LRC) and Achyranthes japonica (AJ)) in osteoblast and osteoclast cells in vitro and ovariectomized mice in vivo. Combined LRC and AJ enhanced osteoblast differentiation and mineralized bone-forming osteoblasts by the up-regulation of bone metabolic markers (Alpl, Runx2 and Bglap) in the osteoblastic cell line MC3T3-E1. However, LRC and AJ inhibited osteoclast differentiation of monocytes isolated from mouse bone marrow. In vivo experiments showed that treatment of LRC+AJ extract prevented OVX-induced trabecular bone loss and osteoclastogenesis in an osteoporotic animal model. These results suggest that LRC+AJ extract may be a good therapeutic agent for the treatment and prevention of osteoporotic bone loss.


Asunto(s)
Achyranthes/química , Conservadores de la Densidad Ósea , Medicamentos Herbarios Chinos/química , Osteogénesis/efectos de los fármacos , Extractos Vegetales , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/farmacología , Línea Celular , Femenino , Ratones , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/metabolismo , Ovariectomía , Extractos Vegetales/química , Extractos Vegetales/farmacología
11.
Int J Mol Med ; 44(6): 2171-2180, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638171

RESUMEN

Pistacia weinmannifolia (Anacardiaceae) has been used in herbal medicine for the treatment of influenza, dysentery and enteritis in China. It was recently observed that P. weinmannifolia root extract (PWRE) exerts anti­inflammatory effects both in in vitro and in vivo models. Based on the results from previous studies, the present study investigated the protective effect of PWRE on airway inflammation and mucus hypersecretion. Treatment with PWRE significantly decreased the number of eosinophils and the levels of Th2 cytokines, such as interleukin (IL)­4, IL­5 and IL­13, in the bronchoalveolar lavage fluid (BALF) of OVA­exposed mice. PWRE decreased the high serum levels of total and OVA­specific immunoglobulin E. PWRE also effectively inhibited the influx of inflammatory cells into the lung, as well as airway mucus hypersecretion. In addition, the increased level of monocyte chemoattractant protein­1 was significantly decreased with the PWRE treatment in the BALF of OVA­exposed mice and in lipopolysaccharide­stimulated RAW264.7 macrophages. These protective effects of PWRE on OVA­induced pulmonary inflammation were accompanied by the downregulation of mitogen associated protein kinases and nuclear factor­κB activation. Thus, the results from the present study indicate that PWRE could be valuable adjuvant for the treatment of asthma.


Asunto(s)
Asma/tratamiento farmacológico , Pistacia/química , Extractos Vegetales/farmacología , Neumonía/tratamiento farmacológico , Animales , Antiasmáticos/farmacología , Asma/inducido químicamente , Asma/patología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , FN-kappa B/genética , Ovalbúmina/toxicidad , Extractos Vegetales/química , Raíces de Plantas/química , Neumonía/inducido químicamente , Neumonía/patología , Células RAW 264.7
12.
Int J Mol Med ; 44(3): 949-959, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31257455

RESUMEN

Pistacia weinmannifolia (PW) has been used in traditional Chinese medicine to treat headaches, dysentery, enteritis and influenza. However, PW has not been known for treating respiratory inflammatory diseases, including chronic obstructive pulmonary disease (COPD). The present in vitro analysis confirmed that PW root extract (PWRE) exerts anti­inflammatory effects in phorbol myristate acetate­ or tumor necrosis factor α (TNF­α)­stimulated human lung epithelial NCI­H292 cells by attenuating the expression of interleukin (IL)­8, IL­6 and Mucin A5 (MUC5AC), which are closely associated with the pulmonary inflammatory response in the pathogenesis of COPD. Thus, the aim of the present study was to evaluate the protective effect of PWRE on pulmonary inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). Treatment with PWRE significantly reduced the quantity of neutrophils and the levels of inflammatory molecules and toxic molecules, including tumor TNF­α, IL­6, IL­8, monocyte chemoattractant protein­1, neutrophil elastase and reactive oxygen species, in the bronchoalveolar lavage fluid of mice with CS­ and LPS­induced pulmonary inflammation. PWRE also attenuated the influx of inflammatory cells in the lung tissues. Furthermore, PWRE downregulated the activation of nuclear factor­κB and the expression of phosphodiesterase 4 in the lung tissues. Therefore, these findings suggest that PWRE may be a valuable adjuvant treatment for COPD.


Asunto(s)
Interleucina-8/biosíntesis , Lipopolisacáridos/efectos adversos , FN-kappa B/metabolismo , Pistacia/química , Extractos Vegetales/farmacología , Neumonía Bacteriana/etiología , Neumonía Bacteriana/metabolismo , Humo/efectos adversos , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
13.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174394

RESUMEN

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Ácidos Cafeicos/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Espermina/análogos & derivados , Animales , Conservadores de la Densidad Ósea/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Ácidos Cafeicos/farmacología , Diferenciación Celular , Línea Celular , Células Cultivadas , Medicamentos Herbarios Chinos/química , Femenino , Ratones , Osteoblastos/citología , Osteoclastos/citología , Osteoporosis/etiología , Ovariectomía/efectos adversos , Espermina/farmacología , Espermina/uso terapéutico
14.
Molecules ; 23(7)2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987205

RESUMEN

Obesity is caused by an excess storage of body fat, resulting from a chronic imbalance between energy intake and expenditure. Gentiana lutea L. (GL) root has been reported to reduce lipid accumulation in the aortic wall of diabetic rats. Here, we performed fractionation and isolation of the bioactive constituent(s) that may be responsible for the antiadipogenic effects of the GL root extract. A single compound, loganic acid, was identified as a candidate component in the 30% ethanol extract of GL. Loganic acid treatment significantly decreased the adipocyte differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. The expression of key adipogenesis-related genes such as adiponectin (Adipoq), peroxisome proliferator-activated receptor gamma (Pparg), lipoprotein lipase (Lpl), perilipin1 (Plin1), fatty acid binding protein 4 (Fabp4), glucose transporter type 4 (Slc2a4), CCAAT/enhancer-binding protein alpha (Cebpa), and tumor necrosis factor-alpha (Tnf) were significantly reduced following treatment with loganic acid. In vivo experiments in an ovariectomy-induced obesity mouse model showed that loganic acid (oral administration with 10 and 50 mg/kg/day) significantly inhibited body weight gain, total fat increase, fatty hepatocyte deposition in the liver, and adipocyte enlargement in the abdominal visceral fat tissues. These results suggest that loganic acid in the GL root extract has antiadipogenic effects in vitro and in vivo. Loganic acid may be beneficial for the prevention and treatment of obesity, particularly in menopausal obese women.


Asunto(s)
Adipocitos/citología , Adipogénesis/efectos de los fármacos , Gentiana/química , Iridoides/administración & dosificación , Obesidad/tratamiento farmacológico , Ovariectomía/efectos adversos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina , Administración Oral , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Unión a Ácidos Grasos , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 4 , Iridoides/química , Iridoides/farmacología , Lipoproteína Lipasa , Ratones , Obesidad/etiología , Obesidad/metabolismo , PPAR gamma , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Factor de Necrosis Tumoral alfa
15.
Am J Chin Med ; 46(2): 423-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29433388

RESUMEN

Eucalyptus globulus Labill. (E. globulus, Myrtaceae) is used in Europe as a traditional folk remedy for inflammation-related disorders such as arthritis, diabetes, asthma, and gout. We investigated this study to evaluate the protective effects of E. globulus extract (EG) on inflammatory responses, and provide scientific and mechanistic evidence in in vitro and in vivo experimental models. LPS-stimulated murine bone marrow-derived macrophages (BMDMs) were used to study the regulatory effect of EG on inflammasome activation in vitro. Monosodium urate (MSU)-induced peritonitis was used to study the effect of EG in an in vivo murine model. EG suppressed IL-[Formula: see text] secretion via the regulation of apoptosis-associated speck-like proteins containing a CARD (ASC) oligomerization and caspase-1 maturation, leading to the inhibition of inflammasome activation. In the in vivo study, EG suppressed the MSU-induced peritonitis by attenuating interleukin (IL)-1[Formula: see text], providing scientific support for its traditional use in the treatment of inflammation-related disorders.


Asunto(s)
Eucalyptus/química , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Peritonitis/tratamiento farmacológico , Peritonitis/etiología , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácido Úrico/efectos adversos , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Inflamación/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/efectos adversos , Ratones Endogámicos C57BL
16.
J Nat Med ; 70(4): 803-10, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27193013

RESUMEN

As a result of the pressure from population explosion, agricultural land resources require further protecting and rationally utilizing. Intercropping technique has been widely applied for agricultural production to save cultivated area, improve crop quality, and promote agriculture economy. In this study, we employed high-performance liquid chromatography (HPLC) and ultraviolet-visible spectroscopy (UV-vis) combined with chemometrics for determination and qualitative evaluation of several kinds of intercropping system with Gentiana rigescens Franch. ex Hemsl. (GR), which is used as an hepatic protector in local communities in China. Results revealed that GR in a Camellia sinensis intercropping system contained most gentiopicroside, sweroside, and total active constituents (six chemical indicators), whose content reached 91.09 ± 3.54, 1.03 ± 0.06, and 104.05 ± 6.48 mg g(-1), respectively. The two applied quantitative and qualitative methods reciprocally verified that GR with 2 years of growth period performed better in terms of quality than 1 year, collectively.


Asunto(s)
Agricultura/métodos , Camellia sinensis , Gentiana/química , Glucósidos Iridoides/análisis , Extractos Vegetales/química , China , Cromatografía Líquida de Alta Presión/métodos , Plantas Medicinales ,
17.
J Sci Food Agric ; 96(13): 4475-83, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26857797

RESUMEN

BACKGROUND: Macamides with a benzylalkylamide nucleus are characteristic and major bioactive compounds in the functional food maca (Lepidium meyenii Walp). The aim of this study was to explore variations in macamide content among maca from China and Peru. Twenty-seven batches of maca hypocotyls with different phenotypes, sampled from different geographical origins, were extracted and profiled by liquid chromatography with ultraviolet detection/tandem mass spectrometry (LC-UV/MS/MS). RESULTS: Twelve macamides were identified by MS operated in multiple scanning modes. Similarity analysis showed that maca samples differed significantly in their macamide fingerprinting. Partial least squares discriminant analysis (PLS-DA) was used to differentiate samples according to their geographical origin and to identify the most relevant variables in the classification model. The prediction accuracy for raw maca was 91% and five macamides were selected and considered as chemical markers for sample classification. CONCLUSION: When combined with a PLS-DA model, characteristic fingerprinting based on macamides could be recommended for labelling for the authentication of maca from different geographical origins. The results provided potential evidence for the relationships between environmental or other factors and distribution of macamides. © 2016 Society of Chemical Industry.


Asunto(s)
Productos Agrícolas/química , Suplementos Dietéticos/análisis , Calidad de los Alimentos , Alimentos Funcionales/análisis , Hipocótilo/química , Lepidium/química , Alcamidas Poliinsaturadas/análisis , Biomarcadores/análisis , China , Cromatografía Líquida de Alta Presión , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Análisis Discriminante , Inspección de Alimentos/métodos , Ácidos Heptanoicos/análisis , Ácidos Heptanoicos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Análisis de los Mínimos Cuadrados , Lepidium/crecimiento & desarrollo , Lepidium/metabolismo , Ácidos Palmíticos/análisis , Ácidos Palmíticos/metabolismo , Perú , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Alcamidas Poliinsaturadas/metabolismo , Solventes/química , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Ultravioleta , Ácidos Esteáricos/análisis , Ácidos Esteáricos/metabolismo , Espectrometría de Masas en Tándem
18.
Biomed Chromatogr ; 30(2): 232-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26094855

RESUMEN

Gentiana rigescens, an ethnomedicine, is widely cultivated in Yunnan province of China. Although a wide range of metabolites including iridoid glycosides, flavonoids and triterpenoids have been reported in this ethnomedicine, the data on accumulation and distribution of metabolites in certain parts are limited. In this study, targeted metabolic fingerprinting of iridoid glycosides based on liquid chromatography-ultraviolet detection-tandem mass spectrometry (LC-UV-MS/MS) was developed to investigate the metabolic similarities and differences in different parts and origins. Thirty-one compounds, including iridoid glycosides and flavonoids, were detected from targeted metabolite profiling and plausibly assigned to the different parts of G. rigescens. Multivariate statistical analysis was designed to reveal close chemical similarities between all the selected samples and to identify key metabolites characteristic of the standard. The results suggested that accumulation and distribution of metabolites in aerial and underground parts were different. Moreover, root samples tended to be grouped on the basis of the geographical closeness of region. Five metabolites can be considered as potential markers for the classification of underground parts from different regions. These results provided chemical information on the potential pharmaceutical value for further research, making G. rigescens ideal for the rational usage of different parts and exploitation of the source.


Asunto(s)
Cromatografía Liquida/métodos , Gentiana/química , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos , Flavonoides/análisis , Flavonoides/química , Glicósidos Iridoides/análisis , Glicósidos Iridoides/química , Medicina Tradicional , Análisis Multivariante
19.
Molecules ; 20(6): 11076-89, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26083040

RESUMEN

The negative-pressure cavitation extraction (NPCE) technique was applied firstly to extract secoisolariciresinol diglucoside (SDG) from flaxseed cakes. The significant extraction parameters were screened by fractional factorial design (FFD). The optimal parameters were determined using the central composite design (CCD) with the two variables, NaOH amount and the liquid/solid ratio. The conditions of the extraction were optimized by using response surface methodology (RSM). Under the optimal conditions, the extraction yield and the extraction purity of SDG was 16.25 mg/g and 3.86%, respectively. The efficiency of NPCE was compared with that of conventional extraction methods. Our results demonstrated that NPCE was comparable to the well-known ultrasound-assisted extraction in term of extraction yield and purity. This extraction technique has advantages of less time-consuming, low solvent usage and high throughput capability.


Asunto(s)
Butileno Glicoles/química , Fraccionamiento Químico , Lino/química , Glucósidos/química , Extractos Vegetales/química , Fraccionamiento Químico/métodos
20.
Int Immunopharmacol ; 26(1): 174-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25662753

RESUMEN

Callicarpa japonica Thunb. (CJT) is traditionally used as an herbal remedy for the treatment of inflammatory diseases. This study aimed to investigate the anti-inflammatory response of CJT in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and LPS-induced acute lung injury (ALI) in mice. The C57BL/6 mice were administered 30 mg/kg of CJT by oral gavage for 3 days. LPS is applied to animals by intranasal administration 1 h after final CJT treatment. LPS is applied to animals by intranasal administration 1h after final CJT treatment. LPS was delivered intranasally 1h after the final CJT treatment. In the LPS-stimulated RAW264.7 cells, CJT significantly decreased nitric oxide (NO) and interleukin (IL)-6 in a concentration-dependent manner by reducing inducible NO synthase (iNOS) and IL-6 mRNA levels. In the ALI model, CJT decreased the inflammatory cell count in the bronchoalveolar lavage fluid (BALF) while IL-6 levels were reduced in CJT-treated mice compared with the ALI control mice. CJT also inhibited airway inflammation by reducing iNOS expression in lung tissue. In conclusion, our results indicate that CJT inhibits inflammatory responses in LPS-stimulated RAW264.7 cells and in the LPS-induced ALI model. Therefore, we suggest that CJT has the potential to treat inflammatory diseases such as pneumonia.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Lamiaceae/química , Pulmón/efectos de los fármacos , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/toxicidad , Líquido del Lavado Bronquioalveolar/química , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/sangre , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/toxicidad , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/patología , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA