Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(6): 3194-3204, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36534030

RESUMEN

BACKGROUND: The physicochemical and functional properties of pectin (JFP) extracted from edible portions (including pericarp and seed) of raw jackfruit (an underutilized tropical fruit) at four different maturity stages (referred to as stages I, II, III, and IV) were characterized in terms of extraction yields, chemical composition, molecular weight, and antioxidant properties to evaluate its potential use in foods. RESULT: The JFP yield increased from 9.7% to 21.5% with fruit maturity, accompanied by an increase in the galacturonic acid content (50.1%, 57.1%, 63.6%, and 65.2%) for stages I-IV respectively. The molecular weight increased from 147 kDa in stage I to 169 kDa in stage III, but decreased to 114 kDa in stage IV, probably due to cell-wall degradation during maturation. The JFP was of the high methoxyl type and the degree of esterification increased from 65% to 87% with fruit maturity. The functional properties of JFP were similar to or better than those reported for commercial apple pectin, thus highlighting its potential as a food additive. Although the phenolics and flavonoids content of JFP decreased with fruit maturity, their antioxidant capacity increased, which may be correlated with the increased content of galacturonic acid upon fruit development. Gels prepared from JFP showed viscoelastic behavior. Depending on the maturity stage in which they were obtained, different gelation behavior was seen. CONCLUSION: The study confirmed the potential of pectin extracted from edible parts of jackfruit as a promising source of high-quality gelling pectin with antioxidant properties, for food applications. © 2022 Society of Chemical Industry.


Asunto(s)
Artocarpus , Pectinas , Pectinas/química , Artocarpus/química , Antioxidantes/análisis , Frutas/química
2.
Nutrients ; 13(11)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34836223

RESUMEN

In recent years, food ingredients rich in bioactive compounds have emerged as candidates to prevent excess adiposity and other metabolic complications characteristic of obesity, such as low-grade inflammation and oxidative status. Among them, fungi have gained popularity for their high polysaccharide content and other bioactive components with beneficial activities. Here, we use the C. elegans model to investigate the potential activities of a Grifola frondosa extract (GE), together with the underlying mechanisms of action. Our study revealed that GE represents an important source of polysaccharides and phenolic compounds with in vitro antioxidant activity. Treatment with our GE extract, which was found to be nongenotoxic through a SOS/umu test, significantly reduced the fat content of C. elegans, decreased the production of intracellular ROS and aging-lipofuscin pigment, and increased the lifespan of nematodes. Gene expression and mutant analyses demonstrated that the in vivo anti-obesity and antioxidant activities of GE were mediated through the daf-2/daf-16 and skn-1/nrf-2 signalling pathways, respectively. Taken together, our results suggest that our GE extract could be considered a potential functional ingredient for the prevention of obesity-related disturbances.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Suplementos Dietéticos , Factores de Transcripción Forkhead/metabolismo , Grifola , Longevidad , Factores de Transcripción/metabolismo , Tejido Adiposo/metabolismo , Envejecimiento , Animales , Fármacos Antiobesidad/farmacología , Antioxidantes/farmacología , Mezclas Complejas/farmacología , Lipofuscina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Food Funct ; 12(16): 7428-7439, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34190270

RESUMEN

In this work, a bioactive persimmon extract was produced from discarded fruits. A central composite design was used to evaluate the effect of different extraction parameters and ripeness stages of persimmon fruits on the total phenolic content and antioxidant activity of the resulting extracts. Significantly greater phenolic contents were obtained from immature persimmon (IP) fruits. The optimum IP extract with the conditions set by the experimental design was industrially up-scaled and its composition and functional properties were evaluated and compared with those obtained under lab-scale conditions. Both extracts contained significant protein (>20%) and phenolic contents (∼11-27 mg GA/g dry extract) and displayed significant antiviral activity against murine norovirus and hepatitis A virus. Moreover, the extract showed no toxicity and significantly reduced the fat content and the cellular ageing of Caenorhabditis elegans (C. elegans) without affecting the worm development. These effects were mediated by down-regulation of fat-7, suggesting an anti-lipogenic activity of this extract.


Asunto(s)
Diospyros/química , Manipulación de Alimentos/métodos , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Residuos/análisis , Animales , Antioxidantes/química , Antivirales/química , Caenorhabditis elegans , Modelos Animales de Enfermedad , Ratones , Norovirus/efectos de los fármacos , Proteínas/química
4.
Curr Med Chem ; 27(17): 2872-2886, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31604404

RESUMEN

The electrospraying technique, which consists of electrohydrodynamic atomization of polymeric fluids, can be used to generate dry nano- and microparticles by subjecting a polymer solution, suspension or melt to a high voltage (typically in the range of 7-20 kV) electric field. This potential can be exploited for developing nano- and microencapsulation structures under mild temperature conditions. Thus, it constitutes a promising alternative to conventional microencapsulation techniques for sensitive ingredients, like most plant-derived bioactive compounds, especially for their application in the food sector. Given the importance of plants as one of the major sources of dietary bioactive compounds, significant attention has been recently paid to research the encapsulation of phytochemicals through novel techniques such as electrospraying, aiming to provide new tools for the development of innovative functional food products and nutraceuticals. In this review, the latest advances in the application of electrospraying for nano- and microencapsulation of phytochemicals are discussed, with a focus on their potential use in the food sector.


Asunto(s)
Alimentos Funcionales , Suplementos Dietéticos , Fitoquímicos , Polímeros
5.
Mar Drugs ; 17(7)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324025

RESUMEN

Posidonia oceanica waste biomass has been valorised to produce extracts by means of different methodologies and their bioactive properties have been evaluated. Water-based extracts were produced using ultrasound-assisted and hot water methods and classified according to their ethanol-affinity (E1: ethanol soluble; E2: non-soluble). Moreover, a conventional protocol with organic solvents was applied, yielding E3 extracts. Compositional and structural characterization confirmed that while E1 and E3 extracts were mainly composed of minerals and lipids, respectively, E2 extracts were a mixture of minerals, proteins and carbohydrates. All the extracts showed remarkably high antioxidant capacity, which was not only related to phenolic compounds but also to the presence of proteins and polysaccharides. All E2 and E3 extracts inhibited the growth of several foodborne fungi, while only E3 extracts decreased substantially the infectivity of feline calicivirus and murine norovirus. These results show the potential of P. oceanica waste biomass for the production of bioactive extracts.


Asunto(s)
Alismatales/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacocinética , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Biomasa , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/virología , Calicivirus Felino/efectos de los fármacos , Gatos , Etanol/química , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Humanos , Lípidos/química , Lípidos/aislamiento & purificación , Lípidos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Hongos Mitospóricos/efectos de los fármacos , Norovirus/efectos de los fármacos , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Células RAW 264.7 , Solventes/química , Agua/química
6.
Carbohydr Polym ; 201: 425-437, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241838

RESUMEN

The design of novel delivery systems to treat vaginal fungal infections is a topic of high interest. Chitosan, being itself antimicrobial and having good mucoadhesive properties, is an excellent candidate as a delivery matrix for active compounds. In this work, chitosan microcapsules containing dry extracts of Argentinean medicinal plants with proved biological properties (Larrea divaricata, L. cuneifolia, L. nitida, Zuccagnia punctata and Tetraglochin andina) were developed through electrospraying and compared with conventionally used tablets containing the same extracts. Total phenolics, loading efficacy, physical properties, morphology and particle size, molecular organization, water sorption capacity, release of bioactive compounds and biological properties were assessed. The encapsulation process or the inclusion in tablets did not degrade the bioactive compounds of the extracts. The release of phenolic compounds from chitosan microcapsules was faster than from tablets. The fingerprint of released phenolic compounds from microcapsules and tablets was similar to that from the dry extracts and the antioxidant and antifungal capacity remained unchanged. The FT-IR analysis suggested interactions between the chitosan and the extracts, which explained why the microcapsules kept the integrity in slightly acidic media. Increased solubility of the extracts when incorporated in the microcapsules was seen in simulated vaginal fluid, potentially increasing the bioavailability of bioactive compounds in the vaginal environment. This work highlights the potential of the chitosan-based delivery systems for phytomedicines with antifungal and antioxidant activity to be used in vulvovaginal candidiasis.


Asunto(s)
Antifúngicos , Candida/crecimiento & desarrollo , Quitosano , Portadores de Fármacos , Extractos Vegetales , Plantas Medicinales/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Administración Intravaginal , Antifúngicos/química , Antifúngicos/farmacología , Cápsulas , Quitosano/química , Quitosano/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Femenino , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología
7.
Food Chem ; 168: 124-33, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172691

RESUMEN

In this work, two different technologies (electrospraying and nanospray drying) were evaluated for the encapsulation of folic acid using both a whey protein concentrate (WPC) matrix and a commercial resistant starch. The morphology of the capsules, molecular organization of the matrices upon encapsulation, encapsulation efficiency, and stability of the folic acid within the capsules under different storage conditions and upon thermal exposure were studied. Results showed that spherical nano-, submicro- and microcapsules were obtained through both techniques, although electrospraying led to smaller capsule sizes and to an enhanced control over their size distribution. Greater encapsulation efficiency was observed using WPC as encapsulating matrix, probably related to interactions between the protein and folic acid which favoured the incorporation of the bioactive. The best results in terms of bioactive stabilization in the different conditions assayed were also obtained for the WPC capsules, although both materials and encapsulation techniques led to improved folic acid stability, especially under dry conditions.


Asunto(s)
Química Farmacéutica/métodos , Coloides/química , Suplementos Dietéticos/análisis , Ácido Fólico/química , Cápsulas/química , Química Farmacéutica/instrumentación , Almidón/química , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA