RESUMEN
Starches from different botanical sources are affected in the presence of enzymes. This study investigated the impact of α-amylase on several properties of pre-gelatinized starches derived from chickpea (Cicer arietinum L.), wheat (Triticum aestivum L.), corn (Zea mays L.), white beans (Phaseolus vulgaris), and sweet potatoes (Ipomoea batatas L.). Specifically, the water holding capacity, freezable water content, sugar content, and water sorption isotherm (adsorption and desorption) properties were examined. The source of α-amylase utilized in this study was a germinated sorghum (Sorghum bicolor L. Moench) extract (GSE). The starch samples were subjected to annealing at temperatures of 40, 50, and 60 °C for durations of either 30 or 60 min prior to the process of gelatinization. A significant increase in the annealing temperature and GSE resulted in a notable enhancement in both the water-holding capacity and the sugar content of the starch. The ordering of starches in terms of their freezable water content is as follows: Chickpea starch (C.P.S) > white beans starch (W.B.S) > wheat starch (W.S) > chickpea starch (C.S) > sweet potato starch (S.P.S). The Guggenheim-Anderson-de Boer (GAB) model was only employed for fitting the data, as the Brunauer-Emmett-Teller (BET) model had a low root mean square error (RMSE). The application of annealing and GSE treatment resulted in a shift of the adsorption and desorption isotherms towards greater levels of moisture content. A strong hysteresis was found in the adsorption and desorption curves, notably within the water activity range of 0.6 to 0.8. The GSE treatment and longer annealing time had an impact on the monolayer water content (mo), as well as the C and K parameters of the GAB model, irrespective of the annealing temperature. These results can be used to evaluate the applicability of starch in the pharmaceutical and food sectors.
Asunto(s)
Ipomoea batatas , Sorghum , Grano Comestible , Amilosa , Almidón , alfa-Amilasas , Agua , Azúcares , Extractos VegetalesRESUMEN
The aqueous alcohol-soluble fraction of wheat gluten is gliadin. This component has been implicated as the causative principle in celiac disease, which is a physiological condition experienced by some infants and adults. The outcome of the ingestion of whole wheat products by susceptible individuals is malabsorption of nutrients resulting from loss of intestinal vili, the nutrient absorption regions of the digestive system. This leads to incessant diarrhea and weight loss in these individuals. Only recently has this health condition been properly recognized and accurately diagnosed in this country. The culprit gliadin is characterized by preponderant glutamine side-chain residues on the protein surface. Gliadin is commercially available as a wheat gluten extract, and in our search for new biobased and environmentally friendly products from renewable agricultural substrates, we have exploited the availability of the glutamine residues of gliadin as synthons to produce novel elastomeric nonfood products dubbed "milkglyde", "saliglyde", and soyglyde from milkweed, salicornia and soybean oils. The reaction is an amidolysis of the oxirane groups of derivatized milkweed, salicornia, and soybean oils under neat reaction conditions with the primary amide functionalties of glutamine to give the corresponding amidohyroxy gliadinyl triglycerides, respectively. The differential scanning calorimetry, thermogravimetric analyses, and rheological data from a study of these products indicate properties similar to those of synthetic rubber.