Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Pollut Res Int ; 31(1): 458-480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015391

RESUMEN

Nonmedical use of modafinil (MOD) led to increased rates of overdose toxicity, road accidents, addiction, withdrawal, suicide, and mental illnesses. The current study aims to determine the probable MOD brain toxicity and elucidate the possible role of selenium (Se) in ameliorating the neurotoxicity in rat models. Fifty-four male Albino rats were randomly assigned into nine groups. The groups were G1 (control negative), G2 (Se0.1), G3 (Se0.2), G4 (MOD300), G5 (MOD600), G6 (Se0.1 + MOD300), G7 (Se0.2 + MOD300), G8 (Se0.1 + MOD600), and G9 (Se0.2 + MOD600). After finishing the experiment, blood and brain tissue were harvested for biochemical and histological investigation. Neurobehavior parameters were assessed. Tissue neurotransmitter levels and oxidative stress markers were assessed. Gene expression of PI3K/Akt/mTOR-GSK3B, orexin, and orexin receptor2 was measured by qRT-PCR. Histological and immunohistochemistry assessments, as well as molecular docking, were carried out. MOD-induced neurobehavioral toxicity exhibited by behavioral and cognitive function impairments, which are associated with decreased antioxidant activities, increased MDA levels, and decreases in neurotransmitter levels. Brain levels of mRNA expression of PI3K, Akt, and mTOR were decreased, while GS3K, orexin, and orexin receptors were significantly elevated. These disturbances were confirmed by histopathological brain changes with increased silver and Bax immunostaining and decreased crystal violet levels. MOD induced neurotoxic effects in a dose-dependent manner. Compared with the MOD groups, SE coadministration significantly attenuates MOD-induced toxic changes. Docking study shows the protective role of Se as an apoptosis inhibitor and inflammation inhibitor. In conclusion, Se could be used as a biologically effective antioxidant compound to protect from MOD neurobehavioral toxicity in Wistar rats by reversing behavioral alterations, inflammation, apoptosis, and oxidative injury.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Selenio , Humanos , Ratas , Masculino , Animales , Selenio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antioxidantes/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modafinilo/farmacología , Orexinas/metabolismo , Orexinas/farmacología , Simulación del Acoplamiento Molecular , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Inflamación , Apoptosis , Neurotransmisores
2.
BMC Complement Med Ther ; 23(1): 457, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098043

RESUMEN

The current research intended to evaluate the antitumor properties of Moringa oleifera oil extract (MOE). Fifty-six female Swiss albino mice were employed in this study. Animals were assigned into four groups: control (C) group, moringa oil extract (MOE) group administered (500 mg/kg b. wt) MOE daily via gavage, Ehrlich ascites carcinoma (EAC) group and EAC group administered daily with (500 mg/kg b.wt) MOE for two weeks (EAC/MOE). The results showed that MOE significantly ameliorated the EAC increase in body weight and reduced the EAC cell viability. In addition, they upgraded the levels of hepatic and renal functions, inflammatory cytokines, oxidative stress markers and EAC-induced hepatic and renal histopathological changes. Treatment of EAC with MOE induced antitumor, anti-inflammatory and antioxidant effects and normalized most of the tested parameters besides the histopathological alterations in both renal and hepatic tissues. HPLC for the MOE identified Cinnamic acid, Ellagic acid, Quercetin, Gallic acid, Vanillin and Hesperidin as major compounds. The molecular docking study highlighted the virtual binding of the identified compounds inside the GSH and SOD proteins, especially for Quercetin which exhibited promising binding affinity with good interactive binding mode with the key amino acids. These results demonstrate that the antitumor constituents of MOE against EAC induced oxidative stress and inflammation by preventing oxidative damage and controlling EAC increase.


Asunto(s)
Carcinoma de Ehrlich , Moringa oleifera , Femenino , Ratones , Animales , Antioxidantes/química , Simulación del Acoplamiento Molecular , Ascitis , Quercetina , Extractos Vegetales/química , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Antiinflamatorios/uso terapéutico , Aceites de Plantas
3.
AMB Express ; 13(1): 47, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184816

RESUMEN

Insecticide resistance in agricultural pests has prompted the need to discover novel compounds with new modes of action. We investigated the potency of secondary metabolites from seventy endophytic actinobacteria against laboratory and field strains of Spodoptera littoralis (fourth instar), comparable to the bioinsecticide spinetoram (Radiant SC 12%). Endophytes from Artemisia herba-alba and A. judaica were highly effective. Chemical profiling of the most potent metabolite of the strain Streptomyces sp. ES2 was investigated using LC-QTOF-MS-MS technique, and the activity was validated through molecular docking studies. Metabolic extracts from actinobacteria belonging to Streptomyces, Nocardioides, and Pseudonocardia showed immediate and latent death to the Spodoptera littoralis fourth instar larvae. The metabolite from strain ES2 has shown the most promising and significant histopathological and inhibitory effects on the fourth instar larvae. ES2 metabolite caused lesions in the body wall cuticle, indicating a different mode of action than that of Radiant. Chemical profiling of ES2 showed the presence of cyromazine (molt inhibitor), 4-nitrophenol, and diazinon as key constituents. In conclusion, these findings suggest that secondary metabolites from endophytic actinobacteria inhabiting wild medicinal plants can be a sustainable source for promising natural biocontrol agents. This is the first illustration of the insecticidal activity of Artemisia spp. microbiome, and natural cyromazine synthesis by actinobacteria.

4.
J Biomol Struct Dyn ; 41(1): 147-160, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854366

RESUMEN

Cakile maritima ssp. aegyptiaca (Wild.) Nyman is growing with dimorphic leaf forms (entire or pinnatifid lamina) along the Mediterranean coast of Egypt. The cytotoxic activities of dried shoot systems of the two morphological forms were evaluated by testing and comparing the effects of ethanolic and aqueous extracts on the viability of five human cell lines. GC-MS analysis was performed to identify the bioactive and anticancer compounds present in the most active extracts. MTT assay indicated that both aqueous and ethanolic extracts have selective cytotoxic activities against cancer cell lines with no inhibitory activities against normal Wi38 or Vero cell lines. The underlying mechanism of cytotoxicity involved the induction of G2/M phase arrest in targeted cells MCF-7 and HCT-116 associated with inducing apoptosis in both cell lines, as indicated by Annexin-V assay. Apoptosis investigation in MCF-7 and HCT-116 cells treated with ethanolic extracts, was further investigated through RT-PCR, which exhibited elevation of proapoptotic genes of P53, BAX, Capase-3,6,7,8,9, and downregulation of antiapoptotic gene (BCL-2) upon treatment. The GC-MS analysis of ethanolic extracts of pinnatifid and entire forms revealed the existence of 18 and 13 compounds, respectively, with eleven compounds that were detected in pinnatifid form only and seven compounds were identified exclusively in the entire form. Molecular Docking study revealed that the identified compounds exhibited good binding affinity towards BCL-2 inhibition, and this agreed with the suggested apoptotic mechanism. To the best of authors' knowledge, this is the first scientific evidence underline the variability in the chemical composition associated with variable anticancer activities of dimorphic forms of C. maritima.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Plantas Tolerantes a la Sal , Humanos , Egipto , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-bcl-2 , Células MCF-7
5.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355507

RESUMEN

The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV-VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.

6.
Molecules ; 27(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36234842

RESUMEN

Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 µg/mL and 0.94 µg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.


Asunto(s)
Cynara scolymus , Nanopartículas del Metal , Neoplasias , Antioxidantes/química , Apoptosis , Ácido Ascórbico , Línea Celular , Cynara scolymus/química , Doxorrubicina , Inflorescencia/química , Fenoles/química , Extractos Vegetales/química , Polifenoles/farmacología , Plata
7.
Molecules ; 27(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35807354

RESUMEN

Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, ß-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of -19.93 and -16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.


Asunto(s)
Balanophoraceae , Espectrometría de Masas en Tándem , Acetatos , Butileno Glicoles , Receptores ErbB , Flavanonas , Cromatografía de Gases y Espectrometría de Masas , Lignanos , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Extractos Vegetales/química , Sitoesteroles , Ácido Betulínico
8.
J Biomol Struct Dyn ; 40(20): 9636-9647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34074230

RESUMEN

The chemical constituents of the nonpolar fractions of the bamboo shoot skin Phyllostachys heterocycla were extensively studied. The phytochemical study was divided into two parts: the first deals with isolation of the chemical constituents using different chromatographic techniques that resulted in isolation of four compounds. The chemical structures of the pure isolated compounds were elucidated using different spectroscopic data. The second part deals with identification of the rest of the constituents using the GC technique. Additionally, both crude extract and the pure isolated compounds were investigated for cytotoxic activity. One of the isolated compounds; namely glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM), and it remarkably stimulated apoptotic breast cancer cell death with 31.6-fold (16.13% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Moreover, the identified compounds especially 1 were found to have high binding affinity towards both TPK and VEGFR-2 through the molecular docking studies which highlight its mode of action. HighlightsChemical profiling of Phyllostachys heterocycla bark nonpolar extract was fully identified.Glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM).Glyceryl 1-monopalmitate significantly stimulated apoptotic breast cancer cell death with 31.6-fold by arresting cell cycle at G2/M and preG1 phases.Molecular docking simulation showed good binding affinities towards TPK and VEGFR-2 proteins.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Extractos Vegetales , Femenino , Humanos , Antineoplásicos/química , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Corteza de la Planta/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Extractos Vegetales/farmacología , Poaceae/química
9.
Antioxidants (Basel) ; 10(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064100

RESUMEN

Cisplatin is a powerful anti-neoplastic drug that displays multi-organ toxicity, especially to the liver and kidneys. Consumption of phytomedicines is a promising strategy to overcome the side effects of chemotherapy. Carrichtera annua extract proved to possess potent antioxidant activity. Its protective potential against cisplatin-induced hepato-nephrotoxicity was scrutinized. Moreover, a phytochemical study was conducted on C. annua ethyl acetate fraction which led to the isolation of five known phenolic compounds. Structure determination was achieved utilizing 1H- and 13C-NMR spectral analyses. The isolated phytochemicals were trans-ferulic acid (1), kaempferol (2), p-coumaric acid (3), luteolin (4) and quercetin (5). Regarding our biological study, C. annua has improved liver and kidney deteriorated functions caused by cisplatin administration and attenuated the histopathological injury in their tissues. Serum levels of ALT, AST, blood urea nitrogen and creatinine were significantly decreased. C. annua has modulated the oxidative stress mediated by cisplatin as it lowered MDA levels while enhanced reduced-GSH concentrations. More importantly, the plant has alleviated cisplatin triggered inflammation, apoptosis via reduction of INFγ, IL-1ß and caspase-3 production. Moreover, mitochondrial injury has been ameliorated as remarkable increase of mtDNA was noted. Furthermore, the MTT assay proved the combination of cisplatin-C. annua extract led to growth inhibition of MCF-7 cells in a notable additive way. Additionally, we have investigated the binding affinity of C. annua constituents with caspase-3 and IFN-γ proteins using molecular simulation. All the isolated compounds exhibited good binding affinities toward the target proteins where quercetin possessed the most auspicious caspase-3 and IFN-γ inhibition activities. Our results put forward that C. annua is a promising candidate to counteract chemotherapy side effects and the observed activity could be attributed to the synergism between its phytochemicals.

10.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578916

RESUMEN

Different extracts of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens were screened against panel of cancer cell lines and normal one. The cell viability results exhibited that the ethyl acetate extract showed the least vitality percentage of 2.14% of HepG2 cells. Accordingly, it was subjected to chromatographic separation, which resulted in the isolation of a new natural product; 7-hydroxy, 5-methoxy, methyl cinnamate (1), together with four known compounds. The structures of the pure isolated compounds were deduced based on different spectroscopic data. The new compound (1) was screened against the HepG2 and MCF-7 cells and showed IC50 values of 7.43 and 10.65 µM, respectively. It induced apoptotic cell death in HepG2 with total apoptotic cell death of 58.6% (12.44-fold) compared to 4.71% in control by arresting cell cycle progression at the G1 phase. Finally, compound 1 was validated as EGFR tyrosine kinase inhibitor in both enzymatic levels (IC50 = 98.65 nM compared to Erlotinib (IC50 = 78.65 nM). Finally, in silico studies of compound 1 through the molecular docking indicated its high binding affinity towards EGFR protein and the ADME pharmacokinetics indicated it as a drug-like.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Poaceae/química , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Células Hep G2 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/patología , Extractos Vegetales/análisis , Poaceae/clasificación , Relación Estructura-Actividad
11.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266171

RESUMEN

Phytochemical screening of nonpolar fractions from the methanol extract of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens resulted in the isolation of a new sterol-glucoside-fatty acid derivative (6'-O-octadeca-8'',11''-dienoyl)-sitosterol-3-O-ß-d-glucoside (1), together with six known compounds. The chemical structures of the pure isolated compounds were deduced based on different spectral data. The isolated compounds were assessed to determine their cytotoxic activity, and the results were confirmed by determining their apoptotic activity. Compound 1 was more cytotoxic against the MCF-7 cells (IC50 = 25.8 µM) compared to Fluorouracil (5-FU) (26.98 µM), and it significantly stimulated apoptotic breast cancer cell death with 32.6-fold (16.63% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Additionally, RT-PCR results further confirmed the apoptotic activity of compound 1 by the upregulation of proapoptotic genes (P53; Bax; and caspases 3, 8, and 9) and downregulation of the antiapoptotic genes (BCL2). Finally, the identified compounds, especially 1, were found to have high binding affinity towards both tyrosine-specific protein kinase (TPK) and vascular endothelial growth factor receptor (VEGFR-2) through the molecular docking studies that highlight its mode of action.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis , Bambusa/química , Neoplasias de la Mama/tratamiento farmacológico , Brotes de la Planta/química , Esteroles/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Ciclo Celular , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/farmacología , Esteroles/química , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 28(24): 115828, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33166925

RESUMEN

Pim-1 kinase targeted recently has proved an essential goal of breast cancer therapy. We report the design, synthesis with full characterization analysis of pyrazolo[3,4-b]pyridine scaffold-based derivatives targeting Pim-1 kinase as anti-breast cancer agents. All the newly synthesized compounds were screened for their in vitro cytotoxic activity against two breast cancer cell lines MCF-7 and MDA-MB-231, and non-cancerous MCF-10A cells. Four derivatives notably, 17 and 19 exhibited a remarkable cytotoxic activity with IC50 values 5.98 and 5.61 µM against MCF-7 (ERα-dependent) cells in a selective way, as they weren't active against MDA-MB-231 (non-ERα-dependent) and safe against MCF-10A. The most active compounds through in vitro screening were subjected to PIM-1 kinase to elucidate the Pim-1 kinase inhibitory activity as the mechanistic mode of action. Among the tested derivatives, Compounds 17 and 19 showed the highest inhibitory activity with IC50 values 43 and 26 nM, respectively, compared to the 5-FU with IC50 value 17 nM. Moreover, apoptotic investigation through flow cytometry and gene expression analysis of the apoptosis-related genes for the most active compound 19 against MCF-7. It was found that compound 19 induced apoptotic MCF-7 cell death by cell cycle arrest at G2/M phase and by elevation the expression of pro-apoptotic genes and inhibition of anti-apoptotic genes expression. Finally, the PIM-1 inhibition activities for compounds 17 and 19 were in accordance with the molecular docking study that revealed good interaction with the Pim-1 kinase active site.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Pirazoles/química , Piridinas/química , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Semivida , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Pirazoles/metabolismo , Pirazoles/farmacología , Piridinas/metabolismo , Piridinas/farmacología , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Steroids ; 152: 108485, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31491446

RESUMEN

There is a pressing need to discover and develop novel drugs against cancer. With the new era of bioinformatics, which integrates different aspects, drug development has been tremendously improved. Recently, extensive research was directed towards the rational modification of steroid molecules against different disease especially cancer. Moreover, heterocyclic steroid derivatives have shown a lot of different biological activities such as antimicrobial, anti-inflammatory, and anti-cancer activities. Molecular docking methods can be used to explore how the steroid derivatives conformations can adopt within the binding sites of specific macromolecular targets involved in cancer progression. We conducted this study to investigate the accuracy of different molecular docking calculations using different steroidal molecular targets, and to define the most accurate one to study the mode of action of steroid derivatives as potential anti-cancer drugs. Our results revealed that the Dock6, PLANTS, AutoDock, GLIDE (SP and XP), and GOLD (ASP, Chemscore, and PLP) software were able to maintain the binding mode of the co-crystallized ligands inside their proteins by achieving RMSD values lower than two. Moreover, molecular docking study revealed that compound 4, and 5 are promising steroidal derivatives as anti-cancer drugs. Further on, the cytotoxic activity of the selected steroidal derivatives were tested against leukemia cell line using MTT assay. The results revealed that compound 4, and 5 were potential cytotoxic agents against THP-1 cells (IC50s were 44.67 µM, and 46.77 µM, respectively), these results are in agreement with the molecular docking study.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Leucemia Monocítica Aguda/tratamiento farmacológico , Esteroides/farmacología , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Ligandos , Modelos Moleculares , Conformación Molecular , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA