Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361698

RESUMEN

The heart is metabolically flexible. Under physiological conditions, it mainly uses lipids and glucose as energy substrates. In uncontrolled diabetes, the heart switches towards predominant lipid utilization, which over time is detrimental to cardiac function. Additionally, diabetes is accompanied by high plasma ketone levels and increased utilization of energy provision. The administration of exogenous ketones is currently being investigated for the treatment of cardiovascular disease. Yet, it remains unclear whether increased cardiac ketone utilization is beneficial or detrimental to cardiac functioning. The mechanism of lipid-induced cardiac dysfunction includes disassembly of the endosomal proton pump (named vacuolar-type H+-ATPase; v-ATPase) as the main early onset event, followed by endosomal de-acidification/dysfunction. The de-acidified endosomes can no longer serve as a storage compartment for lipid transporter CD36, which then translocates to the sarcolemma to induce lipid accumulation, insulin resistance, and contractile dysfunction. Lipid-induced v-ATPase disassembly is counteracted by the supply of specific amino acids. Here, we tested the effect of ketone bodies on v-ATPase assembly status and regulation of lipid uptake in rodent/human cardiomyocytes. 3-ß-hydroxybutyrate (3HB) exposure induced v-ATPase disassembly and the entire cascade of events leading to contractile dysfunction and insulin resistance, similar to conditions of lipid oversupply. Acetoacetate addition did not induce v-ATPase dysfunction. The negative effects of 3HB could be prevented by addition of specific amino acids. Hence, in sedentary/prediabetic subjects ketone bodies should be used with caution because of possible aggravation of cardiac insulin resistance and further loss of cardiac function. When these latter maladaptive conditions would occur, specific amino acids could potentially be a treatment option.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , ATPasas de Translocación de Protón Vacuolares , Humanos , Miocitos Cardíacos/metabolismo , Resistencia a la Insulina/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Cuerpos Cetónicos/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Diabetes Mellitus/metabolismo , Aminoácidos/metabolismo , Suplementos Dietéticos
3.
Mol Metab ; 53: 101293, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34265467

RESUMEN

OBJECTIVE: The diabetic heart is characterized by extensive lipid accumulation which often leads to cardiac contractile dysfunction. The underlying mechanism involves a pivotal role for vacuolar-type H+-ATPase (v-ATPase, functioning as endosomal/lysosomal proton pump). Specifically, lipid oversupply to the heart causes disassembly of v-ATPase and endosomal deacidification. Endosomes are storage compartments for lipid transporter CD36. However, upon endosomal deacidification, CD36 is expelled to translocate to the sarcolemma, thereby inducing myocardial lipid accumulation, insulin resistance, and contractile dysfunction. Hence, the v-ATPase assembly may be a suitable target for ameliorating diabetic cardiomyopathy. Another function of v-ATPase involves the binding of anabolic master-regulator mTORC1 to endosomes, a prerequisite for the activation of mTORC1 by amino acids (AAs). We examined whether the relationship between v-ATPase and mTORC1 also operates reciprocally; specifically, whether AA induces v-ATPase reassembly in a mTORC1-dependent manner to prevent excess lipids from entering and damaging the heart. METHODS: Lipid overexposed rodent/human cardiomyocytes and high-fat diet-fed rats were treated with a specific cocktail of AAs (lysine/leucine/arginine). Then, v-ATPase assembly status/activity, cell surface CD36 content, myocellular lipid uptake/accumulation, insulin sensitivity, and contractile function were measured. To elucidate underlying mechanisms, specific gene knockdown was employed, followed by subcellular fractionation, and coimmunoprecipitation. RESULTS: In lipid-overexposed cardiomyocytes, lysine/leucine/arginine reinternalized CD36 to the endosomes, prevented/reversed lipid accumulation, preserved/restored insulin sensitivity, and contractile function. These beneficial AA actions required the mTORC1-v-ATPase axis, adaptor protein Ragulator, and endosomal/lysosomal AA transporter SLC38A9, indicating an endosome-centric inside-out AA sensing mechanism. In high-fat diet-fed rats, lysine/leucine/arginine had similar beneficial actions at the myocellular level as in vitro in lipid-overexposed cardiomyocytes and partially reversed cardiac hypertrophy. CONCLUSION: Specific AAs acting through v-ATPase reassembly reduce cardiac lipid uptake raising the possibility for treatment in situations of lipid overload and associated insulin resistance.


Asunto(s)
Aminoácidos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Aminoácidos/administración & dosificación , Animales , Dieta Alta en Grasa , Suplementos Dietéticos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Resistencia a la Insulina , Lípidos/efectos adversos , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Endogámicas Lew
4.
Biochem Pharmacol ; 76(10): 1263-75, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18812171

RESUMEN

The antidiabetic efficacy of first-line insulin sensitizers (e.g., metformin, glitazones) is accounted for by activation of AMP-activated protein kinase (AMPK). Long chain fatty acids (LCFA) activate AMPK, but their putative antidiabetic efficacy is masked by their beta-oxidized or esterified lipid products. Substituted alpha,omega-dicarboxylic acids of 14-18 carbon atoms in length (MEDICA analogs) are not metabolized beyond their acyl-CoA thioesters, and may therefore simulate AMPK activation by LCFA while avoiding LCFA turnover into beta-oxidized or esterified lipid products. MEDICA analogs are shown here to activate AMPK and some of its downstream targets in vivo, in cultured cells and in a cell-free system consisting of the (alpha(1)beta(1)gamma(1))AMPK recombinant and LKB1-MO25-STRAD (AMPK-kinase) recombinant proteins. AMPK activation by MEDICA is accompanied by normalizing the hyperglycemia-hyperinsulinemia of diabetic db/db mice in vivo with suppression of hepatic glucose production in cultured liver cells. Activation of AMPK by MEDICA or LCFA is accounted for by (a) decreased intracellular ATP/AMP ratio and energy charge by the free acid, (b) activation of LKB1 phosphorylation of AMPK(Thr172) by the acyl-CoA thioester. The two activation modes are complementary since LKB1/AMPK activation by the CoA-thioester is fully evident under conditions of excess AMP. MEDICA analogs may expand the arsenal of AMPK activators used for treating diabetes type 2.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/farmacología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley
5.
Diabetes ; 57(5): 1176-85, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18420492

RESUMEN

OBJECTIVE: Emerging evidence suggests that dietary phytoestrogens can have beneficial effects on obesity and diabetes, although their mode of action is not known. Here, we investigate the mechanisms mediating the action of dietary phytoestrogens on lipid and glucose metabolism in rodents. RESEARCH DESIGN AND METHODS: Male CD-1 mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Serum levels of circulating isoflavones, ghrelin, leptin, free fatty acids, triglycerides, and cholesterol were quantified. Tissue samples were analyzed by quantitative RT-PCR and Western blotting to investigate changes of gene expression and phosphorylation state of key metabolic proteins. Glucose and insulin tolerance tests and euglycemic-hyperinsulinemic clamp were used to assess changes in insulin sensitivity and glucose uptake. In addition, insulin secretion was determined by in situ pancreas perfusion. RESULTS: In peripheral tissues of soy-fed mice, especially in white adipose tissue, phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase was increased, and expression of genes implicated in peroxisomal fatty acid oxidation and mitochondrial biogenesis was upregulated. Soy-fed mice also showed reduced serum insulin levels and pancreatic insulin content and improved insulin sensitivity due to increased glucose uptake into skeletal muscle. Thus, mice fed with a soy-rich diet have improved adipose and glucose metabolism. CONCLUSIONS: Dietary soy could prove useful to prevent obesity and associated disorders. Activation of the AMPK pathway by dietary soy is likely involved and may mediate the beneficial effects of dietary soy in peripheral tissues.


Asunto(s)
Glucemia/metabolismo , Dieta , Isoflavonas/sangre , Lípidos/sangre , Complejos Multienzimáticos/metabolismo , Fitoestrógenos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Alimentación Animal , Animales , Glucemia/efectos de los fármacos , Cruzamientos Genéticos , Activación Enzimática/efectos de los fármacos , Femenino , Insulina/sangre , Insulina/metabolismo , Masculino , Ratones , Páncreas/efectos de los fármacos , Páncreas/fisiología , Fitoestrógenos/administración & dosificación , Alimentos de Soja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA