Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Res ; 14(12): 4894-4900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336143

RESUMEN

The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large-scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices' driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits' perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (results of the simulation and SEM) is available in the online version of this article at 10.1007/s12274-021-3670-y.

2.
Biochim Biophys Acta Biomembr ; 1860(12): 2608-2618, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30291921

RESUMEN

The Solanum tuberosum plant-specific insert (StPSI) has been shown to possess potent antimicrobial activity against both human and plant pathogens. Furthermore, in vitro, the StPSI is capable of fusing phospholipid vesicles, provided the conditions of net anionic vesicle charge and acidic pH are met. Constant pH replica-exchange simulations indicate several acidic residues on the dimer have highly perturbed pKas (<3.0; E15, D28, E85 & E100) due to involvement in salt bridges. After setting the pH of the system to either 3.0 or 7.4, all-atom simulations provided details of the effect of pH on secondary structural elements, particularly in the previously unresolved crystallographic structure of the loop section. Coarse-grained dimer-bilayer simulations demonstrated that at pH 7.4, the dimer had no affinity for neutral or anionic membranes over the course of 1 µs simulations. Conversely, at pH 3.0 two binding modes were observed. Mode 1 is mediated primarily via strong N-terminal interactions on one monomer only, whereas in mode 2, N- and C-terminal residues of one monomer and numerous polar and basic residues on the second monomer, particularly in the third helix, participate in membrane interactions. Mode 2 was accompanied by re-orientation of the dimer to a more vertical position with respect to helices 1 and 4, positioning the dimer for membrane interactions. These results offer the first examination at near-atomic resolution of residues mediating the StPSI-membrane interactions, and allow for the postulation of a possible fusion mechanism.


Asunto(s)
Concentración de Iones de Hidrógeno , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Membrana Celular/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Fosfolípidos/química , Proteínas de Plantas/química , Unión Proteica , Conformación Proteica , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA