Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7943): 274-279, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631650

RESUMEN

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3-12. In particular, the contact resistance has not surpassed that of covalently bonded metal-semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony ([Formula: see text]) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal-oxide-semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony ([Formula: see text]) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

2.
Nano Res ; 14(12): 4894-4900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336143

RESUMEN

The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large-scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices' driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits' perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (results of the simulation and SEM) is available in the online version of this article at 10.1007/s12274-021-3670-y.

3.
Adv Mater ; 32(31): e2001218, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32588481

RESUMEN

Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic-photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo-optic or electro-optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase-change materials (PCMs) exhibit strong optical modulation in a static, self-holding fashion, but the scalability of present PCM-integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM-clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy-efficient switching units operated with low driving voltages, near-zero additional loss, and reversible switching with high endurance are obtained in a complementary metal-oxide-semiconductor (CMOS)-compatible process. This work can potentially enable very large-scale CMOS-integrated programmable electronic-photonic systems such as optical neural networks and general-purpose integrated photonic processors.

4.
ACS Nano ; 6(1): 441-50, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22165962

RESUMEN

We report the development of a multilayered graphene-Al(2)O(3) nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al(2)O(3) nanolaminate membranes are formed by sequentially depositing layers of graphene and Al(2)O(3), with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al(2)O(3)), and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA-coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene-based structures, including nanoribbons and nanogaps, for single-molecule DNA sequencing and medical diagnostic applications.


Asunto(s)
Óxido de Aluminio/química , Conductometría/instrumentación , Proteínas de Unión al ADN/análisis , ADN/análisis , Grafito/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Técnicas Biosensibles/instrumentación , ADN/química , Proteínas de Unión al ADN/química , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA