Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neurobiol Dis ; 165: 105649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122944

RESUMEN

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Asunto(s)
Distrofias Neuroaxonales , Enfermedades Neurodegenerativas , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Enfermedades Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacología
2.
Planta ; 249(6): 1823-1836, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30847571

RESUMEN

MAIN CONCLUSION: The enzymes HaKCS1 and HaKCS2 are expressed in sunflower seeds and contribute to elongation of C18 fatty acids, resulting in the C20-C24 fatty acids in sunflower oil. Most plant fatty acids are produced by plastidial soluble fatty acid synthases that produce fatty acids of up to 18 carbon atoms. However, further acyl chain elongations can take place in the endoplasmic reticulum, catalysed by membrane-bound synthases that act on acyl-CoAs. The condensing enzymes of these complexes are the ketoacyl-CoA synthase (KCSs), responsible for the synthesis of very long chain fatty acids (VLCFAs) and their derivatives in plants, these including waxes and cuticle hydrocarbons, as well as fatty aldehydes. Sunflower seeds accumulate oil that contains around 2-3% of VLCFAs and studies of the fatty acid elongase activity in developing sunflower embryos indicate that two different KCS isoforms drive the synthesis of these fatty acids. Here, two cDNAs encoding distinct KCSs were amplified from RNAs extracted from developing sunflower embryos and named HaKCS1 and HaKCS2. These genes are expressed in developing seeds during the period of oil accumulation and they are clear candidates to condition sunflower oil synthesis. These two KCS cDNAs complement a yeast elongase null mutant and when expressed in yeast, they alter the host's fatty acid profile, proving the encoded KCSs are functional. The structure of these enzymes was modelled and their contribution to the presence of VLCFAs in sunflower oil is discussed based on the results obtained.


Asunto(s)
Acetiltransferasas/metabolismo , Helianthus/enzimología , Modelos Estructurales , Aceite de Girasol/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Acilcoenzima A/metabolismo , Aldehídos/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , Ácido Graso Sintasas/química , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Helianthus/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
3.
Mol Neurobiol ; 56(5): 3638-3656, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30173408

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.


Asunto(s)
Hierro/metabolismo , Mutación/genética , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Ácido Pantoténico/uso terapéutico , Muerte Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Coenzima A/metabolismo , Metabolismo Energético/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/patología , Fibroblastos/ultraestructura , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Lipofuscina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Ácido Pantoténico/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Carbonilación Proteica/efectos de los fármacos
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3697-3713, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30292637

RESUMEN

Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.


Asunto(s)
Ataxia/complicaciones , Colesterol/metabolismo , Fibroblastos/patología , Hiperlipoproteinemia Tipo II/complicaciones , Enfermedades Mitocondriales/complicaciones , Debilidad Muscular/complicaciones , Ubiquinona/deficiencia , Ataxia/metabolismo , Ataxia/patología , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/patología , Lipoproteínas LDL/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mitofagia , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Especies Reactivas de Oxígeno/metabolismo , Receptores de LDL/metabolismo , Ubiquinona/metabolismo
5.
Food Chem ; 269: 70-79, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30100486

RESUMEN

Wax esters (WEs) and steryl esters (SEs) are minor components of sunflower oils formed by the esterification of long chain fatty alcohols and sterols to fatty acids. These compounds have similar carbon numbers and polarities making them difficult to separate using conventional chromatographic methods. In this study, electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) allowed the rapid and accurate profiling of WEs and SEs acyl moieties in total ester fractions of common and mutant sunflower oils with different fatty acid profiles. The acyl composition of both WEs and SEs partially reflected that of the oil and the high oleic background displayed the lowest level of crystallisable waxes. ESI-MS/MS complemented by GC-MS analyses revealed that SEs contain 17-30% of previously unreported methylsterol moieties. We demonstrated that these compounds are overlooked by official sterol analytical methods which may have consequences for quality control and authentication of vegetable oils prior to commercialisation.


Asunto(s)
Ésteres/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Esteroles/análisis , Aceite de Girasol/química , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos , Aceites de Plantas , Ceras
6.
Food Chem ; 172: 710-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25442612

RESUMEN

Solvent fractionation of high oleic-high stearic (HOHS) sunflower oil was studied to determine the best solvent to use (hexane or acetone) in terms of the operational parameters and properties of the final stearins. Acetone fractionation on two types of HOHS sunflower oils (N17 and N20) was carried out at temperatures from 5 to 10 °C using micelles with different oil/solvent ratios. Acetone was more suitable than hexane as a solvent for HSHO sunflower oil fractionation because it allowed the oil to be fractionated at higher temperatures and at lower supercooling degrees. Likewise, a sunflower soft stearin obtained by dry fractionation of HOHS sunflower oil was also used to produce high-melting point stearins by acetone or hexane fractionation. The fractionation of these stearins could be performed at higher temperatures and gave higher yields. The combination of dry and solvent fractionation to obtain tailor-made stearins is discussed.


Asunto(s)
Fraccionamiento Químico/métodos , Ácido Oléico/análisis , Aceites de Plantas/análisis , Ácidos Esteáricos/análisis , Solventes , Aceite de Girasol
7.
Phytochemistry ; 107: 7-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25212866

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.


Asunto(s)
Brassicaceae/enzimología , Ácidos Grasos/análisis , Aceites de Plantas/metabolismo , Semillas/química , Tioléster Hidrolasas , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Especificidad por Sustrato , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/aislamiento & purificación , Tioléster Hidrolasas/metabolismo
8.
Planta ; 236(4): 1177-90, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22678033

RESUMEN

Triosephosphate isomerase (TPI, EC 5.3.1.1) catalyzes the interconversion of dihydroxyacetone-P and glyceraldehyde 3-P in the glycolytic pathway. A constitutively expressed antisense construct for cytosolic TPI was introduced into potato (Solanum tuberosum) using Agrobacterium rhizogenes to examine the metabolic effects of a reduction in cytosolic TPI in roots. We obtained a population of transgenic root clones displaying ~36 to 100 % of the TPI activity found in control clones carrying an empty binary vector. Ion exchange chromatography and immunoblot analysis showed that the antisense strategy significantly decreased the cytosolic TPI isoform, while levels of plastidial TPI activity remained apparently unaffected. Transgenic roots were characterized with respect to the activity of glycolytic enzymes, their metabolite contents and carbon fluxes. Metabolite profiling of sugars, organic acids, amino acids and lipids showed elevated levels of sucrose, glucose, fructose, fumarate, isocitrate, 4-aminobutyrate, alanine, glycine, aromatic amino acids and saturated long chain fatty acids in roots containing the lowest TPI activity. Labelings with (14)C-glucose, (14)C-sucrose and (14)C-acetate indicated that a reduction of cytosolic TPI activity in roots increased carbon metabolism through the pentose phosphate pathway, O(2) uptake and catabolism of sucrose to CO(2), and capacity for lipid synthesis. These results demonstrate that a large reduction of cytosolic TPI alters the distribution of carbon in plant primary metabolism.


Asunto(s)
Carbono/metabolismo , Oxígeno/metabolismo , Raíces de Plantas/enzimología , Solanum tuberosum/enzimología , Triosa-Fosfato Isomerasa/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Carbohidratos/análisis , Radioisótopos de Carbono/análisis , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/metabolismo , Citosol/enzimología , Glucólisis , Isoenzimas , Metabolismo de los Lípidos , Lípidos/análisis , Nucleótidos/análisis , Nucleótidos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , ARN sin Sentido/genética , ARN de Planta/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Triosa-Fosfato Isomerasa/genética
9.
Planta ; 235(3): 629-39, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22002626

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are enzymes that control the termination of intraplastidial fatty acid synthesis by hydrolyzing the acyl-ACP complexes. Among the different thioesterase gene families found in plants, the FatA-type fulfills a fundamental role in the export of the C18 fatty acid moieties that will be used to synthesize most plant glycerolipids. A reverse genomic approach has been used to study the FatA thioesterase in seed oil accumulation by screening different mutant collections of Arabidopsis thaliana for FatA knockouts. Two mutants were identified with T-DNA insertions in the promoter region of each of the two copies of FatA present in the Arabidopsis genome, from which a double FatA Arabidopsis mutant was made. The expression of both forms of FatA thioesterases was reduced in this double mutant (fata1 fata2), as was FatA activity. This decrease did not cause any evident morphological changes in the mutant plants, although the partial reduction of this activity affected the oil content and fatty acid composition of the Arabidopsis seeds. Thus, dry mutant seeds had less triacylglycerol content, while other neutral lipids like diacylglycerols were not affected. Furthermore, the metabolic flow of the different glycerolipid species into seed oil in the developing seeds was reduced at different stages of seed formation in the fata1 fata2 line. This diminished metabolic flow induced increases in the proportion of linolenic and erucic fatty acids in the seed oil, in a similar way as previously reported for the wri1 Arabidopsis mutant that accumulates oil poorly. The similarities between these two mutants and the origin of their phenotype are discussed in function of the results.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Tioléster Hidrolasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Grasos/genética , Plantas Modificadas Genéticamente/genética , Semillas/genética , Tioléster Hidrolasas/genética
10.
Plant Physiol Biochem ; 49(1): 82-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21071236

RESUMEN

The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Ácidos Grasos/metabolismo , Macadamia/metabolismo , Nueces/metabolismo , Aceites de Plantas/metabolismo , Tioléster Hidrolasas/metabolismo , Clonación Molecular , Escherichia coli , Macadamia/clasificación , Macadamia/genética , Nueces/química , Nueces/clasificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Tioléster Hidrolasas/química
11.
Phytochemistry ; 71(8-9): 860-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382402

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.


Asunto(s)
Ricinus communis/enzimología , Tioléster Hidrolasas/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/análisis , Aceite de Ricino/biosíntesis , Datos de Secuencia Molecular , Estructura Molecular , Análisis de Secuencia de Proteína , Homología de Secuencia de Ácido Nucleico
12.
New Phytol ; 184(2): 330-339, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656305

RESUMEN

* Oil crops are a very important commodity. Although many genes and enzymes involved in lipid accumulation have been identified, much less is known of regulation of the overall process. To address the latter we have applied metabolic control analysis to lipid synthesis in the important crop, oilpalm (Elaeis guineensis). * Top-down metabolic control analysis (TDCA) was applied to callus cultures capable of accumulating appreciable triacylglycerol. The biosynthetic pathway was divided into two blocks, connected by the intermediate acyl-CoAs. Block A comprised enzymes for fatty acid synthesis and Block B comprised enzymes of lipid assembly. * Double manipulation TDCA used diflufenican and bromooctanoate to inhibit Block A and Block B, respectively, giving Block flux control coefficients of 0.61 and 0.39. Monte Carlo simulations provided extra information from previously-reported single manipulation TDCA data, giving Block flux control coefficients of 0.65 and 0.35 for A and B. * These experiments are the first time that double manipulation TDCA has been applied to lipid biosynthesis in any organism. The data show that approaching two-thirds of the total control of carbon flux to lipids in oilpalm cultures lies with the fatty acid synthesis block of reactions. This quantitative information will assist future, informed, genetic manipulation of oilpalm.


Asunto(s)
Arecaceae/metabolismo , Lípidos/biosíntesis , Aceites de Plantas/metabolismo , Productos Agrícolas/metabolismo , Ácidos Grasos/biosíntesis , Metabolismo de los Lípidos/efectos de los fármacos , Método de Montecarlo , Niacinamida/análogos & derivados , Niacinamida/farmacología
13.
FEBS J ; 272(22): 5764-70, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16279941

RESUMEN

We applied metabolic control analysis to the Kennedy pathway for triacylglycerol formation in tissue cultures from the important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). When microsomal fractions were incubated at 30 degrees C rather than 20 degrees C, there was an increase in triacylglycerol labelling. This increase was accompanied by a build up of diacylglycerol (DAG) radioactivity in olive but not in oil palm, suggesting that the activity of DAG acyltransferase (DAGAT) was becoming limiting in olive. We used 2-bromooctanoate as a specific inhibitor of DAGAT and showed that the enzyme had a flux control coefficient under the experimental conditions of 0.74 in olive but only 0.12 in oil palm. These data revealed important differences in the regulation of lipid biosynthesis in cultures from different plants and suggest that changes in the endogenous activity of DAGAT is unlikely to affect oil accumulation in oil palm crops.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Lípidos/biosíntesis , Magnoliopsida/metabolismo , Olea/metabolismo , Aceites de Plantas/metabolismo , Caprilatos/farmacología , Radioisótopos de Carbono , Técnicas de Cultivo de Célula , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Magnoliopsida/citología , Microsomas/efectos de los fármacos , Olea/citología , Estándares de Referencia , Temperatura
14.
J Agric Food Chem ; 53(5): 1648-55, 2005 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15740054

RESUMEN

Most of the volatile compounds responsible for the "green" notes to the aroma of fruits and vegetables are produced by the degradation of polyunsaturated fatty acids through the lipoxygenase pathway. The most determinant steps of this pathway are the peroxidation of free linoleic or linolenic acid by the action of lipoxygenase and then the lysis of the resulting hydroperoxides through a reaction catalyzed by the hydroperoxide lyase. This work analyzes the impact of the depletion of these enzymes on the volatile composition of leaves from potato plants. A characterization of the volatile profiles of the different potato mutants, a study of the metabolism of radiolabeled linoleic acid, and a determination of lipoxygenase activity have been carried out. The depletion of hydroperoxide lyase induced an increase in the lipoxygenase activity and the content of C5 volatiles, whereas the lipoxygenase silencing caused a severe decrease in the amount of volatiles produced by the leaves and always in the intensity of their aroma. The changes in the sensory evaluation of leaf aroma, as correlated to depletion of the two enzymes, have been investigated. The perspectives of producing vegetable products with a modified aroma by genetic engineering are discussed in light of the statistical results.


Asunto(s)
Aldehído-Liasas/fisiología , Sistema Enzimático del Citocromo P-450/fisiología , Lipooxigenasa/fisiología , Odorantes/análisis , Hojas de la Planta/química , Aldehído-Liasas/deficiencia , Aldehído-Liasas/genética , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/genética , Ácido Linoleico/metabolismo , Lipooxigenasa/deficiencia , Lipooxigenasa/genética , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/enzimología , Solanum tuberosum/química , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Volatilización , Ácido alfa-Linolénico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA