Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Biochim Pol ; 70(2): 425-433, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329564

RESUMEN

The current study investigated the in-vivo and in-silico anti-inflammatory effect of Aloe barbadensis in edema induced rat and its blood biomarkers. 60 albino rats (160-200 g) were divided into 4 groups. The 1st group (control) comprised of 6 rats that were treated with saline. The 2nd group (standard) comprised of 6 rats that were treated with diclofenac. The 3rd and 4th experimental groups consisted of 48 rats, treated with A. barbadensis gel ethanolic and aqueous extracts respectively at doses of 50, 100, 200 and 400 mg/kg. According to paw sizes, groups III and IV showed 51% and 46% inhibition respectively at the 5th hour, as compared to group II with 61% inhibition. Correlation was negative between biomarkers in group III, while, positive in group IV. Blood samples were collected; C-reactive protein and interleukin-6 were measured using commercially available ELISA kits. Similarly, biomarkers showed significant effect in dose-dependent manner. In molecular docking, for CRP both ligands aloe emodin and emodin showed -7.5 kcal/mol binding energy as compared to diclofenac with -7.0 kcal/mol. For IL-1beta, both ligands showed -4.7 kcal/mol binding energy as compared to diclofenac -4.4 kcal/mol. Hence, we concluded that A. barbadensis extracts can be used as an effective drug for managing inflammation.


Asunto(s)
Aloe , Diclofenaco , Ratas , Animales , Diclofenaco/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína C-Reactiva , Interleucina-6 , Aloe/química , Ligandos , Simulación del Acoplamiento Molecular , Edema/inducido químicamente , Edema/tratamiento farmacológico
2.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677695

RESUMEN

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. The traditional approaches for nanoparticle synthesis are not only expensive, laborious, and hazardous but also have various limitations. Therefore, new biological approaches are being designed to synthesize economical and environmentally friendly nanoparticles with enhanced antimicrobial activity. The current study focuses on the isolation, identification, and screening of metallotolerant fungal strains for the production of silver nanoparticles, using antimicrobial activity analysis and the characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). In total, 11 fungal isolates were isolated and screened for the synthesis of AgNPs, while the Penicillium notatum (K1) strain was found to be the most potent, demonstrating biosynthetic ability. The biologically synthesized silver nanoparticles showed excellent antibacterial activity against the bacteria Escherichia coli (ATCC10536), Bacillus subtilis, Staphylococcus aureus (ATCC9144), Pseudomonas aeruginosa (ATCC10145), Enterococcus faecalis, and Listeria innocua (ATCC13932). Furthermore, three major diffraction peaks in the XRD characterization, located at the 2θ values of 28.4, 34.8, 38.2, 44, 64, and 77°, confirmed the presence of AgNPs, while elemental composition analysis via EDX and spherical surface topology with a scanning electron microscope indicated that its pure crystalline nature was entirely composed of silver. Thus, the current study indicates the enhanced antibacterial capability of mycologically synthesized AgNPs, which could be used to counter multidrug-resistant pathogens.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/química , Bacterias , Espectrometría por Rayos X , Desarrollo de Músculos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
3.
Food Res Int ; 147: 110470, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399468

RESUMEN

Lactic acid bacteria have been reported to be capable of converting polyunsaturated fatty acids, e.g. linoleic acid (LA) into bioactive and other fatty acid metabolites that are not toxic to the bacteria themselves, but the mechanism of this conversion is not clear. Here we reported for the first time that probiotic L. plantarum 12-3 derived from Tibet kefir when supplemented with LA from 1% to 10% in the MRS medium transformed LA to various fatty acid derivatives. These derivatives formed in the medium were identified with gas chromatography and mass spectrometry. In silico studies were done to confirm the enzymatic reactions responsible for this conversion. We found that L. plantarum 12-3 could convert LA at different concentrations to 8 different fatty acid derivatives. Putative candidate enzymes involved in biotransformation of LA into fatty acid derivatives were identified via whole genome of L. plantarum 12-3, including linoleate isomerase, acetoacetate decarboxylase and dehydrogenase. Therefore, the present study provides further understanding of the mechanism of conversion of LA to health-beneficial fatty acid metabolites in probiotic L. plantarum, which can be explored for potential application in functional foods.


Asunto(s)
Lactobacillus plantarum , Biotransformación , Simulación por Computador , Cromatografía de Gases y Espectrometría de Masas , Ácido Linoleico
4.
Food Funct ; 11(7): 6308-6318, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32602881

RESUMEN

Folate deficiency is accompanied by gut dysbacteriosis. To understand dietary intervention in folate deficiency, a folate-deficient rat model was used to evaluate the modulatory effects of folate-producing lactic acid bacteria (LAB) and biofortified yogurt on gut dysbacteriosis. The high folate-producing strain was screened from 12 LABs, and its variant, namely Lactobacillus plantarum GSLP-7 V, with folate productivity in yogurt at 3.72 µg mL-1, was obtained by stressing with 5.0 mg L-1 methotrexate and 100.00 mg L-1 Ca2+. To our knowledge, this is the highest folate productivity in yogurt by LAB strains ever reported. To further examine the folate supplement effect in vivo, a folate-deficient rat model was established and fed a folate-free diet for 8 weeks. Also, the effects of L. plantrum GSLP-7 V, yogurt fermented with L. plantrum GSLP-7 V, plain yogurt, and chemical folic acid on folate deficiency and gut dysbacteriosis were examined. Analysis of the change in gut microbiota showed that the gut dysbacteriosis was significantly correlated with folate deficiency. Administration of L. plantrum GSLP-7 V and its fermented yogurt for 10 days restored the disrupted gut microbiota and recovered the serum folate and homocysteine to normal levels, while chemical folic acid worsened the gut dysbacteriosis. Chemical folic acid only enriched Akkermansia, while L. plantrum GSLP-7 V and its fermented yogurt modulated the gut microbiota comprehensively through 7 and 10 key genera, respectively. This study confirmed the effectiveness of dietary intervention with folate-biofortified yogurt through modulating gut microbiota, suggesting the potential of the folate-producing LAB as an agent for the treatment of folate-deficiency related diseases.


Asunto(s)
Disbiosis/terapia , Deficiencia de Ácido Fólico/terapia , Ácido Fólico/sangre , Alimentos Fortificados/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillales/metabolismo , Yogur/análisis , Animales , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Fermentación , Homocisteína/sangre , Lactobacillus plantarum/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
5.
Acta Biochim Pol ; 67(1): 123-129, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32187238

RESUMEN

The objective of this study was to assess and scrutinize the competency of probiotic L. plantarum K25 to produce linoleic acid analogues in the medium supplemented with different concentrations of linoleic acid, ranging from 1% to 10%, in a dose dependent manner. The analogues produced were identified and quantitated by GC-MS and in silico studies were done to confirm enzymatic reactions involved in its conversion. The results showed that L. plantarum K25 could convert linoleic acid at different concentrations to 9 different fatty acid analogues at concentrations ranging from 0.01 to 17.24 mg/L. Among these metabolites, formation of an essential fatty acid, the linolenic acid, in media supplemented with 9% linoleic acid, is being reported for the first time. Putative candidate enzymes involved in biotransformation of linoleic acid into linoleic acid analogues were identified in the whole genome of L. plantarum K25, which was sequenced previously. In silico studies confirmed that many enzymes, including linoleate isomerase and dehydrogenase, may be involved in biotransformation of linoleic acid into linoleic acid analogues. Both enzymes could effectively bind the linoleic acid molecule, mainly by forming hydrogen bonding between the acidic groups of linoleic acid and the proline residues at the active sites of the enzymes, validating putative reaction partners.


Asunto(s)
Lactobacillus plantarum/metabolismo , Ácido Linoleico/metabolismo , Ácido alfa-Linolénico/metabolismo , Biotransformación , Dominio Catalítico , Simulación por Computador , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Microbiología de Alimentos/métodos , Cromatografía de Gases y Espectrometría de Masas , Lactobacillus plantarum/enzimología , Prolina , Ácido alfa-Linolénico/biosíntesis
6.
Acta Biochim Pol ; 67(1): 99-109, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32031769

RESUMEN

Lactobacillus plantarum YW11 capability to convert linoleic acid into conjugated linoleic acid and other metabolites was studied in a dose-dependent manner by supplementing LA at different concentrations. L. plantarum YW11 displayed a uniform distinctive growth curve of CLA and other metabolites at concentrations of LA ranging from 1% (w/v) to 10% (w/v), with slightly increased growth at higher LA concentrations. The biotransformation capability of L. plantarum YW11 evaluated by GC-MS revealed a total of one CLA isomer, i.e. 9-cis,11-trans-octadecadienoic acid, also known as the rumenic acid (RA), one linoleic acid isomer (linoelaidic acid), and LA metabolites: (E)-9-octadecenoic acid ethyl ester, trans, trans-9,12-octadecadienoic acid, propyl ester and stearic acid. All the metabolites of linoleic acid were produced from 1 to 10% LA supplemented MRS media, while surprisingly the only conjugated linoleic acid compound was produced at 10% LA. To assess the presence of putative enzymes, responsible for conversion of LA into CLA, in silico characterization was carried out. The in silico characterization revealed presence of four enzymes (10-linoleic acid hydratase, linoleate isomerase, acetoacetate decarboxylase and dehydrogenase) that may be involved in the production of CLA (rumenic acid) and LA isomers. The biotransformation ability of L. plantarum YW11 to convert LA into RA has great prospects for biotechnological and industrial implications that could be exploited in the future scale-up experiments.


Asunto(s)
Biotransformación , Lactobacillus plantarum/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Simulación por Computador , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Isomerismo , Lactobacillus plantarum/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA