Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neuroendocrinol ; 35(3): e13239, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863859

RESUMEN

The third ventricle (3 V) wall of the tuberal hypothalamus is composed of two types of cells; specialized ependymoglial cells called tanycytes located ventrally and ependymocytes dorsally, which control the exchanges between the cerebrospinal fluid and the hypothalamic parenchyma. By regulating the dialogue between the brain and the periphery, tanycytes are now recognized as central players in the control of major hypothalamic functions such as energy metabolism and reproduction. While our knowledge of the biology of adult tanycytes is progressing rapidly, our understanding of their development remains very incomplete. To gain insight into the postnatal maturation of the 3 V ependymal lining, we conducted a comprehensive immunofluorescent study of the mouse tuberal region at four postnatal ages (postnatal day (P) 0, P4, P10, and P20). We analyzed the expression profile of a panel of tanycyte and ependymocyte markers (vimentin, S100, connexin-43 [Cx43], and glial fibrillary acidic protein [GFAP]) and characterized cell proliferation in the 3 V wall using the thymidine analog bromodeoxyuridine. Our results show that most changes in marker expression occur between P4 and P10, with a switch from a 3 V mostly lined by radial cells to the emergence of a tanycytic domain ventrally and an ependymocytic domain dorsally, a drop in cell proliferation and increased expression of S100, Cx43, and GFAP that acquire a mature profile at P20. Our study thus identifies the transition between the first and the second postnatal week as a critical time window for the postnatal maturation of the 3 V wall ependymal lining.


Asunto(s)
Tercer Ventrículo , Ratones , Animales , Masculino , Tercer Ventrículo/metabolismo , Conexina 43/metabolismo , Neuroglía/metabolismo , Hipotálamo/metabolismo , Células Ependimogliales/metabolismo , Proliferación Celular
2.
J Neuroendocrinol ; 34(5): e13104, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233849

RESUMEN

To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.


Asunto(s)
Astrocitos , Hormona Liberadora de Gonadotropina , Adulto , Astrocitos/metabolismo , Células Ependimogliales/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Recién Nacido , Neuronas/metabolismo , Maduración Sexual/fisiología
3.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34795451

RESUMEN

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Asunto(s)
Hormona Liberadora de Gonadotropina , Maduración Sexual , Astrocitos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/fisiología , Neuronas/fisiología , Maduración Sexual/fisiología
4.
Handb Clin Neurol ; 179: 125-140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225958

RESUMEN

The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Adulto , Encéfalo , Humanos , Hipotálamo , Neuronas
5.
Mol Metab ; 47: 101172, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33513436

RESUMEN

OBJECTIVE: Astrocytes are glial cells proposed as the main Sonic hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. In this study, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. METHODS: We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, and Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined with immunohistofluorescence of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under a high-fat diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity, and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake, and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. RESULTS: Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in the YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and also observed under a HFD. The YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole-body fatty acid oxidation. In contrast, food intake, locomotor activity, and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, activation of the astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and liver kinase B1 (LKB1) after 4 weeks and the glucose transporter GLUT-4 after 32 weeks. CONCLUSIONS: Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Envejecimiento , Animales , Astrocitos/patología , Metabolismo Energético/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Neuronas/metabolismo , Obesidad , Receptores Patched/deficiencia , Receptores Patched/genética , Transducción de Señal , Activación Transcripcional
6.
Endocr Rev ; 39(3): 333-368, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351662

RESUMEN

The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.


Asunto(s)
Barrera Hematoencefálica/fisiología , Metabolismo Energético/fisiología , Células Ependimogliales/fisiología , Hipotálamo/fisiología , Reproducción/fisiología , Animales , Humanos
7.
J Comp Neurol ; 526(9): 1419-1443, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29230807

RESUMEN

The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.


Asunto(s)
Hipotálamo/anatomía & histología , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Animales , Ontologías Biológicas , Proteínas de Dominio Doblecortina , Humanos , Lemur , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ratas , Especificidad de la Especie
8.
Cell Metab ; 25(5): 995-996, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467945

RESUMEN

The hypothalamic control of metabolism appears to be a puzzle that cannot be explained by neuronal function alone. Zhang and colleagues (2017) add a few new pieces by demonstrating that astrocytes critically modulate neural circuits controlling energy homeostasis through nutritional-status-dependent morphological plasticity and IKKß/NF-κB signaling, which modulate extracellular neurotransmitter bioavailability.


Asunto(s)
Astrocitos/metabolismo , Hipotálamo/fisiología , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Animales , Astrocitos/citología , Metabolismo Energético , Homeostasis , Humanos , Red Nerviosa , Fenómenos Fisiológicos de la Nutrición , Estado Nutricional
9.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28032215

RESUMEN

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Glioma/metabolismo , Hidroxibutiratos/metabolismo , Células Madre Neoplásicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Carcinogénesis/patología , Muerte Celular/fisiología , Proliferación Celular/fisiología , Niño , Preescolar , Femenino , Glioma/patología , Glioma/cirugía , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Succionato-Semialdehído Deshidrogenasa/metabolismo
10.
Methods Mol Biol ; 814: 137-51, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22144306

RESUMEN

Although rodent models have been essential to unveil the emerging functions of astrocytes, the existence of interspecies differences calls for caution in extrapolating data from rodent to human astrocytes. We have developed highly enriched primary astrocyte cultures from human fetuses and adult cerebro-cortical biopsies from neurosurgery patients. Immunocytochemical characterization shows that cultures are composed of more than 95% of cells expressing in vitro astrocytic markers. Examination of the morphological and proliferative properties of cultures derived from the cerebral cortex and the hypothalamus both in untreated conditions and after treatment with EGF-related ligands illustrates the high plasticity of human astrocytes and their functional heterogeneity according to the cerebral region of origin. Our preparation offers the opportunity to characterize human astrocyte functions in vitro and also provides a valuable tool for studying the functional heterogeneity of human astrocytes isolated from distinct brain regions.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Técnicas de Cultivo de Célula/métodos , Corteza Cerebral/citología , Hipotálamo/citología , Adulto , Proliferación Celular , Feto/citología , Humanos , Inmunohistoquímica , Plasticidad Neuronal/fisiología
11.
Neurochem Int ; 57(4): 344-58, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20685225

RESUMEN

Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.


Asunto(s)
Astrocitos/fisiología , Comunicación Celular/fisiología , Sistema Nervioso Central/fisiología , Receptores ErbB/fisiología , Genes erbB/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/citología , Ácido Glutámico/metabolismo , Humanos , Hipotálamo/fisiología , Enfermedades del Sistema Nervioso/patología , Reproducción/fisiología
12.
Glia ; 57(4): 362-79, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18803307

RESUMEN

Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders.


Asunto(s)
Astrocitos/fisiología , Corteza Cerebral/citología , Receptores ErbB/metabolismo , Hipotálamo/citología , Transducción de Señal/fisiología , Análisis de Varianza , Bromodesoxiuridina , Proliferación Celular , Células Cultivadas , Receptores ErbB/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Feto , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunoprecipitación/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurregulina-1/farmacología , ARN Interferente Pequeño/farmacología , Receptor ErbB-4 , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador alfa/farmacología , Tirosina/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA