Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Ethnopharmacol ; 327: 117835, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Croton crassifolius has been used as a traditional Chinese medicine (TCM), called Radix Croton Crassifolius, and commonly known as "Ji Gu Xiang" in Chinese. Its medicinal value has been recorded in several medical books or handbooks, such as "Sheng Cao Yao Xing Bei Yao", "Ben Cao Qiu Yuan" and "Zhong Hua Ben Cao". It has been traditional employed for treating sore throat, stomach-ache, rheumatism and cancer. AIM OF THE STUDY: At present, there are limited studies on the evaluation of low-polarity extracts of roots in C. crassifolius. Consequently, the aim of this study was to evaluate the antitumor effect of the low-polarity extract of C. crassifolius root. MATERIALS AND METHODS: Extracts were obtained by supercritical fluid extraction. The extracts were tested for antitumor effects in vitro on several cancer cell lines. A CCK-8 kit was used for further analysis of cell viability. A flow cytometer and propidium iodide staining were used to evaluate the cell cycle and apoptosis. Hoechst staining, JC-1 staining and the fluorescence probe DCFH-DA were used to evaluate apoptotic cells. Molecular mechanisms of action were analyzed by quantitative RT‒PCR and Western blotting. Immunohistochemistry was used for the evaluation of xenograft tumors in male BALB/c mice. Finally, molecular docking was employed to predict the bond between the desired bioactive compound and molecular targets. RESULTS: Eleven diterpenoids were isolated from low-polarity C. crassifolius root extracts. Among the compounds, chettaphanin II showed the strongest activity (IC50 = 8.58 µM) against A549 cells. Evaluation of cell viability and the cell cycle showed that Chettaphanin II reduced A549 cell proliferation and induced G2/M-phase arrest. Chttaphanin II significantly induced apoptosis in A549 cells, which was related to the level of apoptosis-related proteins. The growth of tumor tissue was significantly inhibited by chettaphanin II in experiments performed on naked mice. The antitumor mechanism of chettaphanin II is that it can obstruct the mTOR/PI3K/Akt signaling pathway in A549 cells. Molecular docking established that chettaphanin II could bind to the active sites of Bcl-2 and Bax. CONCLUSIONS: Taken together, the natural diterpenoid chettaphanin II was identified as the major antitumor active component, and its potential for developing anticancer therapies was demonstrated for the first time by antiproliferation evaluation in vitro and in vivo.


Asunto(s)
Cromatografía con Fluido Supercrítico , Croton , Diterpenos , Humanos , Masculino , Ratones , Animales , Croton/química , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/uso terapéutico , Diterpenos/farmacología , Proliferación Celular , Ratones Endogámicos BALB C , Apoptosis , Línea Celular Tumoral
2.
Colloids Surf B Biointerfaces ; 237: 113835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479260

RESUMEN

The limited application of garlic essential oil (GEO) is attributed to its pungent taste, poor water solubility and low bioavailability. Liposomes are nontoxic, biodegradable and biocompatible, and ß-cyclodextrin can inhibit undesirable odors and improve the stability and bioavailability. Thus a promising dual-layer GEO ß-cyclodextrin inclusion compound liposome (GEO-DCL) delivery system with both advantages was designed and prepared in this study. Experimental results indicated that the encapsulation efficiency of GEO-DCLs was 5% higher than that of GEO liposomes (GEO-CLs), reaching more than 88%. In vitro release experiment showed that the release rate of GEO in GEO-DCLs was 40% lower than that of GEO-CLs after incubation in gastric juice for 6-h, indicating that the stability of GEO-DCLs was better than GEO-CLs. Evaluation of the effects of GEO-DCLs on lowering blood lipid levels in hypercholesterolemia mice. GEO-DCLs could reduce the weight and fat deposition in hypercholesterolemia mice. Inhibiting the increase of TC, LDL-C, and decrease of HDL-C in mice. The degree of liver injury was decreased, the number of round lipid droplets in liver cytoplasm was reduced, and the growth of fat cells was inhibited. The lipid-lowering effects of GEO-DCLs were dose-dependent. GEO-DCL can improve the bioavailability of GEO and improve dyslipidemia. Based on GEO's efficacy in lowering blood lipids, this study developed a kind of GEO-DCL compound pomegranate juice beverage with good taste, miscibility and double effect of reducing blood lipids. This study lays a foundation for the application of GEO in the field of functional food.


Asunto(s)
Ajo , Hipercolesterolemia , Hiperlipidemias , Aceites Volátiles , beta-Ciclodextrinas , Ratones , Animales , Liposomas , Aceites Volátiles/farmacología , Antioxidantes
3.
J Cosmet Dermatol ; 23(4): 1452-1464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214419

RESUMEN

BACKGROUND: The skin condition of women is different at different ages, and skin surface lipids are also different. According to the "7-7 theory" of the Huangdi Neijing, the physiological condition of women changes significantly every 7 years, and women aged 22-28 are in the "4-7" stage as mentioned in the "7-7 theory" of the Huangdi Neijing. Women's skin is in different states at different ages and produces different lipids. OBJECTIVES: To explore the key lipids that contribute to skin differences between women aged 22-28 and 29-35 years, and to explore the relationship with physiological parameters and daily routine. METHODS: Differential lipids were detected and screened between 22-28 year old (group D1) and 29-35 year old (group D2) dry-skinned women using UPLC-Q-TOF-MS and correlated between the two groups with questionnaires and physiological parameters based on basic information, lifestyle habits, work situation, and emotional stress. RESULTS: The results showed that all of the eight major classes of lipids had the highest expression in the D2 group, with the largest differences in glycerophospholipids, glycerol esters, and fatty acids. The BMI value of D2 group was higher than that of D1 group, the skin elasticity index (R2) and brightness index (L, a, ITA values) were lower than that of D1 group, and Cer (d18:0/16:0) was positively correlated with the R2, L, a, and ITA, and LMSP01080056 (N,N-dimethyl-Safingol) was positively correlated with the b-value, the LMSPGP03020013, LMSPGP03020014, LMSP03020024 were significantly negatively correlated with R2. CONCLUSIONS: Cer(d18:0/16:0) is a neurosphingol that inhibits elastase expression. N,N-dimethyl-Safingol readily undergoes oxidation to form yellow-brown solids. The macromolecular structure and excessive carbonyl structure of [LMGP0302] are susceptible to cross-linking and carbonyl stress reactions, which accelerate skin aging and reduce skin elasticity, and thus, they may be key lipids contributing to skin differences between the two age groups.


Asunto(s)
Lipidómica , Lípidos , Esfingosina/análogos & derivados , Humanos , Femenino , Adulto Joven , Adulto , Lípidos/análisis , Ácidos Grasos/metabolismo , Piel/metabolismo
4.
Curr Top Med Chem ; 23(28): 2640-2698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818581

RESUMEN

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.


Asunto(s)
Productos Biológicos , Morus , Plantas Medicinales , Morus/química , Productos Biológicos/farmacología , Plantas Medicinales/química , Extractos Vegetales/química , Flavonoides/farmacología , Fitoquímicos/farmacología , Etnofarmacología , Fitoterapia
5.
Bioorg Chem ; 138: 106623, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295240

RESUMEN

Fangchinoline (Fan) are extracted from the traditional Chinese medicine Stephania tetrandra S., which is a bis-benzyl isoquinoline alkaloids with anti-tumor activity. Therefore, 25 novel Fan derivatives have been synthesized and evaluated for their anti-cancer activity. In CCK-8 assay, these fangchinoline derivatives displayed higher proliferation inhibitory activity on six tumor cell lines than the parental compound. Compared to the parent Fan, compound 2h presented the anticancer activity against most cancer cells, especially A549 cells, with an IC50 value of 0.26 µM, which was 36.38-fold, and 10.61-fold more active than Fan and HCPT, respectively. Encouragingly, compound 2h showed low biotoxicity to the human normal epithelial cell BEAS-2b with an IC50 value of 27.05 µM. The results indicated compound 2h remarkably inhibited the cell migration by decreasing MMP-2 and MMP-9 expression and inhibited the proliferation of A549 cells by arresting the G2/M cell cycle. Meanwhile, compound 2h could also induce A549 cell apoptosis by promoting endogenous pathways of mitochondrial regulation. In nude mice presented that the growth of tumor tissues was markedly inhibited by the consumption of compound 2h in a dose-dependent manner, and it was found that compound 2h could inhibit the mTOR/PI3K/AKT pathway in vivo. In docking analysis, high affinity interaction between 2h and PI3K was responsible for drastic kinase inhibition by the compound. To conclude, this derivative compound may be useful as a potent anti-cancer agent for treatment of NSCLC.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
J Ethnopharmacol ; 317: 116770, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37308029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat hyperuricemia, but this particular effect is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY: To research the uric acid (UA)-lowering activity and mechanism of AR and the representative compounds through the constructed hyperuricemia mouse and cellular models. MATERIALS AND METHODS: In our study, the chemical profile of AR was analysed by UHPLC-QE-MS, as well as the mechanism of action of AR and the representative compounds on hyperuricemia was studied through the constructed hyperuricemia mouse and cellular models. RESULTS: The main compounds in AR were terpenoids, flavonoids and alkaloids. Mice group treated with the highest AR dosage showed significantly lower (p < 0.0001) serum uric acid (208 ± 9 µmol/L) than the control group (317 ± 11 µmol/L). Furthermore, UA increased in a dose-dependence manner in urine and faeces. Serum creatinine and blood urea nitrogen standards, as well as xanthine oxidase in mice liver, decreased (p < 0.05) in all cases, indicating that AR could relieve acute hyperuricemia. UA reabsorption protein (URAT1 and GLUT9) was down-regulated in AR administration groups, while the secretory protein (ABCG2) was up-regulated, indicating that AR could promote the excretion of UA by regulating UA transporters via PI3K/Akt signalling pathway. CONCLUSION: This study validated the activity, and revealed the mechanism of AR in reducing UA, which provided experimental and clinical basis for the treatment of hyperuricemia with it.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Ratones , Animales , Ácido Úrico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Proteínas de Transporte de Membrana
7.
Phytomedicine ; 112: 154702, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764096

RESUMEN

BACKGROUND: Nervonic acid (C24:1∆15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. PURPOSE: The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. METHODS: To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. RESULTS: In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. CONCLUSION: These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Cromatografía Liquida , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados/farmacología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
8.
J Agric Food Chem ; 71(3): 1434-1446, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36525382

RESUMEN

Hyperuricemia characterized by high serum levels of uric acid (UA, >6.8 mg/dL) is regarded as a common chronic metabolic disease. When used as a food supplement, naringenin might have various pharmacological activities, including antioxidant, free-radical-scavenging, and inflammation-suppressing activities. However, the effects of naringenin on hyperuricemia and renal inflammation and the underlying mechanisms remain to be elucidated. Here, we comprehensively examined the effects of naringenin on hyperuricemia and the attenuation of renal impairment. Mice were injected with 250 mg/kg of potassium oxonate (PO) and given 5% fructose water to induce hyperuricemia. The pharmacological effects of naringenin (10 and 50 mg/kg) and benzbromarone (positive control group, 20 mg/kg) on hyperuricemic mice were evaluated in vivo. The disordered expression of urate transporters in HK-2 cells was stimulated by 8 mg/dL UA, which was used to determine the mechanisms underlying the effects of naringenin in vitro. Naringenin markedly reduced the serum UA level in a dose-dependent manner and improved renal dysfunction. Moreover, the increased elimination of UA in urine showed that the effects of naringenin were associated with the regulation of renal excretion. Further examination indicated that naringenin reduced the expression of GLUT9 by inhibiting the PI3K/AKT signaling pathway and reinforced the expression of ABCG2 by increasing the abundance of PDZK1 in vivo and in vitro. Furthermore, sirius red staining and western blotting indicated that naringenin plays a protective role in renal injury by suppressing increases in the levels of pro-inflammatory cytokines, including IL-6 and TNF-α, which contribute to the inhibition of the TLR4/NF-κB signaling pathway in vivo and in vitro. Naringenin supplementation might be a potential therapeutic strategy to ameliorate hyperuricemia by promoting UA excretion in the kidney and attenuating the inflammatory response by decreasing the release of inflammatory cytokines. This study shows that naringenin could be used as a functional food or dietary supplement for hyperuricemia prevention and treatment.


Asunto(s)
Hiperuricemia , Ratones , Animales , Hiperuricemia/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ácido Úrico/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Eliminación Renal , Riñón/metabolismo , Transducción de Señal , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Citocinas/metabolismo , Ácido Oxónico
9.
Front Pharmacol ; 13: 1026246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483739

RESUMEN

Hyperuricemia is the result of increased production and/or underexcretion of uric acid. Hyperuricemia has been epidemiologically associated with multiple comorbidities, including metabolic syndrome, gout with long-term systemic inflammation, chronic kidney disease, urolithiasis, cardiovascular disease, hypertension, rheumatoid arthritis, dyslipidemia, diabetes/insulin resistance and increased oxidative stress. Dysregulation of xanthine oxidoreductase (XOD), the enzyme that catalyzes uric acid biosynthesis primarily in the liver, and urate transporters that reabsorb urate in the renal proximal tubules (URAT1, GLUT9, OAT4 and OAT10) and secrete urate (ABCG2, OAT1, OAT3, NPT1, and NPT4) in the renal tubules and intestine, is a major cause of hyperuricemia, along with variations in the genes encoding these proteins. The first-line therapeutic drugs used to lower serum uric acid levels include XOD inhibitors that limit uric acid biosynthesis and uricosurics that decrease urate reabsorption in the renal proximal tubules and increase urate excretion into the urine and intestine via urate transporters. However, long-term use of high doses of these drugs induces acute kidney disease, chronic kidney disease and liver toxicity. Therefore, there is an urgent need for new nephroprotective drugs with improved safety profiles and tolerance. The current systematic review summarizes the characteristics of major urate transporters, the mechanisms underlying the pathogenesis of hyperuricemia, and the regulation of uric acid biosynthesis and transport. Most importantly, this review highlights the potential mechanisms of action of some naturally occurring bioactive compounds with antihyperuricemic and nephroprotective potential isolated from various medicinal plants.

10.
PeerJ ; 10: e12807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186457

RESUMEN

BACKGROUND: Shading is an important factor affecting the cultivation of American ginseng, as it influences crop quality and yield. Rhizosphere microorganisms are also crucial for normal plant growth and development. However, whether different shade types significantly change American ginseng rhizosphere microorganisms is unknown. METHODS: This study evaluated the rhizosphere soils of American ginseng under traditional, high flag and high arch shade sheds. High-throughput 16S rRNA gene sequencing determined the change of rhizosphere bacterial communities. RESULTS: The microbial diversity in rhizosphere soils of American ginseng significantly changed under different shading conditions. The bacteria diversity was more abundant in the high arch shade than flat and traditional shades. Different bacterial genera, including Bradyrhizobium, Rhizobium, Sphingomonas, Streptomyces and Nitrospira, showed significantly different abundances. Different shading conditions changed the microbial metabolic function in the American ginseng rhizosphere soils. The three types of shade sheds had specific enriched functional groups. The abundance of ATP-binding cassette (ABC) transporters consistently increased in the bacterial microbiota. These results help understand the influence of shading systems on the rhizosphere microecology of American ginseng, and contribute to the American ginseng cultivation.


Asunto(s)
Panax , Bacterias/genética , Panax/genética , Raíces de Plantas/microbiología , Rizosfera , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
11.
Biomed Pharmacother ; 129: 110378, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32544818

RESUMEN

PDB-1 is a new C-27-carboxylated-lupane-triterpenoid derivative isolated from Potentilla discolor Bunge. In our previous research, PDB-1 was suggested to have an obvious selectivity for tumor cells. This study focused on clarifying PDB-1's anticancer mechanism in the inhibition of proliferation and in the induction of apoptosis and autophagy in A549 cells. In general, A549 cells were treated with PDB-1 for different times, and cell survival was assessed by a CCK8 assay. The assessment of intracellular reactive oxygen species, a mitochondrial membrane potential assay, a cell cycle assay, an annexin V-FITC/PI assay, and MDC staining were performed in A549 cells treated with PDB-1. Moreover, the mRNA and protein expression of cell cycle-, apoptosis- and autophagy-related factors were detected by RT-qPCR and western blotting. The results showed that PDB-1 inhibited A549 cell proliferation and colony formation in a dose- and time-dependent manner. The decrease in the viability of A549 cells was due to a G2/M cell cycle arrest. Moreover, PDB-1 induced cell apoptosis, accompanied by an increase in the Bax/Bcl-2 ratio and an increase in the expression levels of cleaved caspase-3/caspase-9. We also found that PDB-1 induced autophagy by increasing the conversion of LC3-I to LC3-II and elevating Beclin-1. In addition, further studies indicated that pretreatment with a specific PI3K inhibitor (LY294002) enhanced the effects of PDB-1 on the expression of proteins associated with apoptosis and autophagy, demonstrating that the PI3K/Akt/mTOR pathway was related to PDB-1-induced apoptosis and autophagy. These results indicated that PDB-1 may be considered a potential candidate for the future treatment of lung adenocarcinoma. These findings should benefit the development of the C14-COOH type of pentacyclic triterpenoids.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa/metabolismo , Extractos Vegetales/farmacología , Potentilla , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Triterpenos/farmacología , Células A549 , Antineoplásicos Fitogénicos/aislamiento & purificación , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células MCF-7 , Extractos Vegetales/aislamiento & purificación , Potentilla/química , Transducción de Señal , Triterpenos/aislamiento & purificación
12.
J Sci Food Agric ; 100(12): 4495-4503, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32399976

RESUMEN

BACKGROUND: Steam explosion is increasingly being used in the food processing industry as an efficient pretreatment technology. It is currently being used to pretreat adzuki beans at a pressure of 0.25-1.0 Mpa for 30 s and 90 s. In this study, the total polyphenol (TP) content in adzuki beans, including free polyphenols (FP) and bound polyphenols (BP), and their antioxidant activity, were determined after steam explosion treatment. RESULTS: The results showed that steam explosion can form large cavities and intercellular spaces, which aid the release of polyphenols. After steam explosion, the FP, BP, and TP content increased. The antioxidant capacity of FP and BP also increased, which demonstrated that there was a positive correlation between the polyphenol content and antioxidant capacity. Compounds of FP and BP were further identified by high-performance liquid chromatography (HPLC). Protocatechin was the main ingredient in FP and BP, and protocatechin was higher in FP. Isoquercetin only exists in FP, and caffeic acid only in BP. After steam explosion, an increase in the protocatechin, catechin, and epicatechin content was detected in FP and BP. The phenolic compound and antioxidant capacity yield was increased at a pressure of 0.25-0.75 Mpa, however it decreased at 1.0 Mpa. A pressure of 0.75 Mpa for 90 s is the optimal condition for polyphenol separation in adzuki beans. CONCLUSION: A proper and reasonable steam explosion can effectively increase the release of phenolics and enhance the antioxidant capacity in adzuki beans. © 2020 Society of Chemical Industry.


Asunto(s)
Antioxidantes/aislamiento & purificación , Manipulación de Alimentos/métodos , Extractos Vegetales/aislamiento & purificación , Polifenoles/aislamiento & purificación , Vigna/química , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Manipulación de Alimentos/instrumentación , Extractos Vegetales/análisis , Polifenoles/análisis , Semillas/química , Vapor
13.
Phytochemistry ; 170: 112192, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726325

RESUMEN

Chemical fractionation of the ethanolic extract of Eclipta prostrata yielded a series of unreported terpenoid constituents, including a rare 6/6/6/6-fused tetracyclic triterpenoid, a pentacyclic triterpenoid, two pentacyclic triterpenoid saponins, a diterpenoid and a sesquiterpenoid. Structures were assigned to these compounds on the basis of comprehensive spectroscopic analyses, with the absolute configurations of the tetracyclic triterpenoid, the diterpenoid and the sesquiterpenoid being determined via explanation of electronic circular dichroism data. Screening of these isolates in an array of bioassays revealed antibacterial, cytotoxic and α-glucosidase inhibitory activities for selective compounds. Of particular interest, the tetracyclic triterpenoid showed very strong inhibition against α-glucosidase with an IC50 of 0.82 ±â€¯0.18 µM, being 103-fold as active as the positive control acarbose.


Asunto(s)
Antibacterianos/farmacología , Eclipta/química , Inhibidores de Glicósido Hidrolasas/farmacología , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Terpenos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Neoplasias/patología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Terpenos/química , Terpenos/aislamiento & purificación , alfa-Glucosidasas/metabolismo
14.
Phytomedicine ; 61: 152846, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31035041

RESUMEN

BACKGROUND: The use of plant essential oils as pharmaceuticals is a fast-growing market especially in China. Throughout the 20th century, a rapid increase took place in the use of many essential oil-derived products in the medicinal industry as nutraceuticals, medicinal supplements, and pharmaceuticals. PURPOSE: The objective of this study was to explore the chemical composition of Croton crassifolius essential oil as well as its potential anti-tumour properties and related anti-proliferative, autophagic, and apoptosis-inducing effects. METHODS: Supercritical CO2 fluid extraction technology was used to extract CCEO and the chemical constituents of the essential oil were identified by comparing the retention indices and mass spectra data taken from the NIST library with those calculated based on the C7-C40 n-alkanes standard. The cytotoxic activity and anti-proliferative effects of CCEO were evaluated against five cancer cell lines and one normal human cell line via CCK-8 assays. In addition, flow cytometry was used to detect cell cycle arrest. The efficacy of CCEO treatments in controlling cancer cell proliferation was assessed by cell cycle analysis, clonal formation assays, RT-qPCR, and western blot analysis. Autophagic and apoptosis-inducing effects of oils and the associated molecular mechanisms were assessed by flow cytometry, cell staining, reactive oxygen species assays, RT-qPCR, and western blot analysis. CONCLUSION: Forty compounds representing 92.90% of the total oil were identified in CCEO. The results showed that CCEO exerted a measurable selectivity for cancer cell lines, especially for A549 with the lowest IC50 value of 25.00 ± 1.62 µg/mL. Assessment of the anti-proliferative effects of CCEO on A549 cells showed that the oil inhibited cell proliferation and colony formation in a dose- and time-dependent manner. Investigation of the molecular mechanisms of cell cycle regulation confirmed that the oil arrested A549 cells in G2/M phase by decreasing the expression of cyclin B1-CDK1 and cyclin A-CDK1 and increasing the expression of cyclin-dependent kinase inhibitor (CKI) P21 at both the transcriptional and translational levels. Autophagy staining assays and western blot analysis revealed that CCEO promoted the formation of autophagic vacuoles in A549 cells and increased the expression of autophagy-related proteins beclin-1 and LC3-II in a dose-dependent manner. A series of apoptosis analyses indicated that CCEO induces apoptosis through a mitochondria-mediated intrinsic pathway. This study revealed that CCEO is a promising candidate for development into an anti-tumour drug of the future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Cromatografía con Fluido Supercrítico/métodos , Croton/química , Aceites Volátiles/química , Células A549 , Antineoplásicos Fitogénicos/química , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Proteína Quinasa CDC2/metabolismo , Dióxido de Carbono/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Aceites Volátiles/análisis , Raíces de Plantas/química , Especies Reactivas de Oxígeno/metabolismo
15.
Gastroenterology ; 156(8): 2281-2296.e6, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30779922

RESUMEN

BACKGROUND & AIMS: Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS: We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS: MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.


Asunto(s)
Biomarcadores/metabolismo , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Regeneración/fisiología , Animales , Biopsia con Aguja , Estudios de Casos y Controles , China , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Microesferas , ARN Mensajero/metabolismo , Distribución Aleatoria , Transducción de Señal
16.
Chem Biodivers ; 13(6): 645-71, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27161126

RESUMEN

Ligularia speices are widely used in Asian folk medicines for the treatment of various human diseases. Eremophilane-type sesquiterpenes are abundant and typical secondary metabolites found in this genus. Over 500 eremophilanes reported from members of Ligularia are reviewed in this article together with bioactivity data in an effort to highlight the development in this field.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antivirales/farmacología , Asteraceae/química , Sesquiterpenos/farmacología , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antivirales/química , Antivirales/aislamiento & purificación , Bacterias/efectos de los fármacos , Línea Celular , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación
17.
Zhong Yao Cai ; 38(3): 514-7, 2015 Mar.
Artículo en Chino | MEDLINE | ID: mdl-26495651

RESUMEN

OBJECTIVE: To investigate the chemical constituents in the ethanol extract from the whole plant of Euphorbia lunulata. METHODS: The whole plant of Euphorbia lunulata was extracted by 95% ethanol, then partitioned by system solvents with different polarity. The ethyl acetate and n-butyl alcohol extracts were separated on silica gel, Sephadex LH-20,and MCI columns. The isolated compounds were determined by detailed analysis of their spectral data. RESULTS: Twelve compounds were isolated and identified from the ethyl acetate and n-butyl alcohol extracts of Euphorbia lunulata and the structures were identified as 7ß-methoxy-stigmast-5-ene-3ß-ol (1), 7ß-methoxy-stigmast-5-ene-3ß,22ß-diol(2), asperglaucide(3), moscatin (4), p-hydroxybenzoic acid (5),3-methoxy-4-hydroxy benzoic acid(6), erigeside C(7),5,7,4'-trihydroxy flavanone(8), kaempferol(9), quercetin(10), corosolic acid(11) and acacetin (12). CONCLUSION: All compounds except for 9 and 10 are reported from this plant for the first time.


Asunto(s)
Euphorbia/química , Fitoquímicos/química , Extractos Vegetales/química , Quempferoles , Fitoquímicos/aislamiento & purificación , Quercetina
18.
Nat Prod Res ; 29(14): 1369-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25566798

RESUMEN

The chemical constituent of the essential oil from Anaphalis lacteal was determined; 31 compounds, representing 93.91% of the total oil, were identified by gas chromatography-mass spectrometry analysis. Three Gram-positive bacteria species, three Gram-negative bacteria species and four fungi were used to determine antimicrobial activity; the results revealed that the essential oil had a remarkable antimicrobial effect against bacteria and a susceptive effect against fungus. The oil also possessed more efficient free-radical scavenging activities than butylated hydroxytoluene (BHT) with 50% inhibitory concentration (IC50) value 31 µg/mL (40 µg/mL for BHT). MTT assay illustrated that the oil expressed certain effect in inhibiting the growth of HeLa and Hep-6 cancer cells.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Asteraceae/química , Aceites Volátiles/química , Aceites de Plantas/química , Línea Celular Tumoral/efectos de los fármacos , China , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA