Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 108(5): 1400-1421, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34592024

RESUMEN

Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP-Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP-Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Infertilidad Vegetal , Polen , Unión Proteica , Prenilación de Proteína , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
2.
PLoS One ; 12(2): e0172682, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234963

RESUMEN

The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.


Asunto(s)
Adaptación Fisiológica , Pared Celular/efectos de los fármacos , Lípidos/biosíntesis , Cloruro de Sodio/farmacología , Estrés Fisiológico , Terpenos/metabolismo , Tilia/efectos de los fármacos , Alcoholes/aislamiento & purificación , Alcoholes/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Lípidos/aislamiento & purificación , Mucoproteínas/biosíntesis , Mucoproteínas/aislamiento & purificación , Pectinas/biosíntesis , Pectinas/aislamiento & purificación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/aislamiento & purificación , Salinidad , Suelo/química , Terpenos/aislamiento & purificación , Tilia/metabolismo , Árboles/efectos de los fármacos , Árboles/metabolismo
3.
J Gene Med ; 18(11-12): 331-342, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27706881

RESUMEN

BACKGROUND: One of the major challenges limiting the development of gene therapy is an absence of efficient and safe gene carriers. Among the nonviral gene delivery methods, lipofection is considered as one of the most promising. In the present study, a set of cationic polyprenyl derivatives [trimethylpolyprenylammonium iodides (PTAI)] with different lengths of polyprenyl chains (from 7, 8 and 11 to 15 isoprene units) was suggested as a component of efficient DNA vehicles. METHODS: Optimization studies were conducted for PTAI in combination with co-lipid dioleoylphosphatidylethanolamine on DU145 human prostate cancer cells using: size and zeta potential measurements, confocal microscopy, the fluorescein diacetate/ethidium bromide test, cell counting, time-lapse monitoring of cell movement, gap junctional intercellular coupling analysis, antimicrobial activity assay and a red blood cell hemolysis test. RESULTS: The results obtained show that the lipofecting activity of PTAI allows effective transfection of plasmid DNA complexed in negatively-charged lipoplexes of 200-500 nm size into cells without significant side effects on cell physiology (viability, proliferation, morphology, migration and gap junctional intercellular coupling). Moreover, PTAI-based vehicles exhibit a potent bactericidal activity against Staphylococcus aureus and Escherichia coli. The developed anionic lipoplexes are safe towards human red blood cell membranes, which are not disrupted in their presence. CONCLUSIONS: The developed carriers constitute a group of promising lipofecting agents of a new type that can be utilized as effective lipofecting agents in vitro and they are also an encouraging basis for in vivo applications.


Asunto(s)
Compuestos de Amonio/toxicidad , Terpenos/toxicidad , Transfección , Compuestos de Amonio/química , Aniones , Antibacterianos/química , Antibacterianos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Escherichia coli , Terapia Genética , Hemolíticos/química , Hemolíticos/toxicidad , Humanos , Liposomas , Tamaño de la Partícula , Staphylococcus aureus , Terpenos/química
4.
Anal Biochem ; 512: 78-90, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27530653

RESUMEN

Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Evaluación Preclínica de Medicamentos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
5.
J Exp Bot ; 66(1): 213-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316062

RESUMEN

Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αß. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Flores/genética , Mutación , Transferasas/genética , Transferasas/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Fertilidad/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Datos de Secuencia Molecular , Polen/metabolismo , Tubo Polínico/crecimiento & desarrollo , Reproducción , Transferasas/química
6.
Neuropsychopharmacology ; 39(4): 841-54, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24108067

RESUMEN

The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for 21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays. In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used. Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological modulation of both emotional and cognitive processes in rodents.


Asunto(s)
Anticolesterolemiantes/farmacología , Colesterol/metabolismo , Cognición/efectos de los fármacos , Emociones/efectos de los fármacos , Simvastatina/farmacología , Terpenos/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Proteína de Unión a CREB/metabolismo , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Triglicéridos/sangre
7.
Biomacromolecules ; 5(5): 2013-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15360318

RESUMEN

A structural study of low molecular weight rubbers from Jackfruit (Artocarpus heterophyllus) and Painted spurge (Euphorbia heterophylla) was carried out as model compounds of natural rubber from Hevea brasiliensis. The rubber content of latex from Jackfruit was 0.4-0.7%, which is very low compared with that of 30-35% in the latex from Hevea tree. The rubber from Jackfruit latex was low molecular weight with narrow unimodal molecular weight distribution (MWD), whereas that obtained from E. heterophylla showed very broad MWD. The 1H and 13C NMR analyses showed that Jackfruit rubber consists of a dimethylallyl group and two trans-isoprene units connected to a long sequence of cis-isoprene units. The alpha-terminal group of Jackfruit rubber was presumed to be composed of a phosphate group based on the presence of 1H NMR signal at 4.08 ppm corresponding to the terminal =CH-CH2OP group.


Asunto(s)
Artocarpus , Euphorbia/química , Goma/química , Estructura Molecular , Tamaño de la Partícula , Extractos Vegetales/análisis , Extractos Vegetales/química , Goma/análisis
8.
Biofactors ; 18(1-4): 11-22, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14695916

RESUMEN

All animal cells synthesize sufficient amounts of coenzyme Q (CoQ) and the cells also possess the capacity to metabolize the lipid. The main product of the metabolism is an intact ring with a short carboxylated side chain which glucuronidated in the liver and excreted mainly into the bile (Nakamura et al., Biofactors 9 (1999), 111-119). In other cells CoQ is phosphorylated, transferred into the blood and excreted through the urine. The biosynthesis of this lipid is regulated by nuclear receptors. PPARalpha is not required for the biosynthesis, or induction upon cold exposure, but it is necessary for the elevated CoQ synthesis during peroxisomal induction. RXRalpha is involved in the basal synthesis of CoQ and also in the increased synthesis upon cold treatment but is not required for peroxisomal induction. Dietary CoQ in human appear in the blood and it is taken up by mononuclear but not polynuclear cells. The former cells display a specific phospholipid modification, an increase of arachidonic acid content. In monocytes the CoQ administration leads to a significant decrease of the beta2-integrin CD11b and the complement receptor CD35. CD11b is one of the adhesion factors regulating the entry of these cells into the arterial wall which demonstrates that the anti-atherogenic effect of CoQ is mediated by other mechanisms beside its antioxidant protection.


Asunto(s)
Homeostasis , Ubiquinona/biosíntesis , Ubiquinona/metabolismo , Animales , Arteriosclerosis/prevención & control , Bilis/metabolismo , Antígenos CD18/metabolismo , Suplementos Dietéticos , Humanos , Hígado/metabolismo , Monocitos/fisiología , Fosforilación , Receptores de Ácido Retinoico/fisiología , Receptores X Retinoide , Factores de Transcripción/fisiología , Ubiquinona/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA