Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105898, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467280

RESUMEN

Underutilized fruits are thought to be nutrient and antioxidant gold mines. Despite their high nutritive value, therapeutic properties, and ability to grow in adverse soil and climatic conditions, they have received little attention. However, these underutilized fruits are an important component of traditional foods, particularly in arid and semiarid regions of Rajasthan. Lasoda (Cordia myxa) contains numerous phytochemicals that contribute to its antioxidant potential, including tannins, flavonoids, phenolic acids, xanthones, terpenes, and saponins. The primary goal of this review is to emphasize the importance of extracting bioactive compounds from lasoda and evaluating their antioxidant potential. Furthermore, this review emphasizes the major areas for the application of lasoda and its extract as prospective positive health agents that can be used in the preparation of functional foods. The use of lasoda may also improve the value of bakery products and meat quality and prevent postharvest losses. This review is a pilot article that can aid in the nutritional profiling of Cordia fruits and seeds, and it provides information on the effective and efficient use of this underutilized fruit in the food and nutraceutical industries.


Asunto(s)
Antioxidantes , Frutas , Fitoquímicos , Antioxidantes/farmacología , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Alimentos Funcionales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Valor Nutritivo , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/aislamiento & purificación
2.
Front Nutr ; 11: 1280100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371502

RESUMEN

Diabetes is a chronic metabolic disease that endangers the entire body's tissues and organs. Diabetes impairs glucose and insulin regulation in the human body by causing pancreatic cell damage. Diabetes modifies pathways such as serine/threonine protein kinase (Akt) and Protein kinase C (PKC)/- glucose transporter 4 (GLUT4), peroxisome proliferator-activated receptor (PPAR) glucose absorption, and inhibits α-amylase and α-glucosidase, Sodium/glucose cotransporter 1 (SGLT-1), and Na+-K+-ATPase activity. Diabetes may also be caused by a decrease in the expression of sterol regulatory element binding protein 1 (SREBP-1) and its target genes, fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and acetyl-CoA carboxylase α (ACC), as well as a decrease in the levels of C/EBP homologous protein (CHOP), Caspase12, and Caspase3 proteins. Diabetes has long been linked to diseases of the cardiovascular, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. Diosgenin, a steroidal compound derived from fenugreek, aids in the prevention of diabetes by altering cellular pathways in favor of healthy bodily functions. Diosgenin is a new nutraceutical on the market that claims to cure diabetes in particular. This article focuses on diosgenin extraction and purification, fenugreek bioactive compounds, pharmacological properties of diosgenin, mode of action of diosgenin to cure diabetes, and dosages.

3.
Phytochem Rev ; : 1-31, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36686403

RESUMEN

The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research.

4.
J Food Sci ; 87(7): 2798-2819, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35708201

RESUMEN

Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.


Asunto(s)
Salvia , Antioxidantes/análisis , Alimentos Funcionales , Preparaciones Farmacéuticas/análisis , Extractos Vegetales , Aceites de Plantas/química , Salvia/química , Salvia hispanica , Semillas/química
5.
Food Chem ; 353: 129431, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714109

RESUMEN

Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.


Asunto(s)
Tecnología Química Verde , Extractos Vegetales/química , Plantas/química , Antocianinas/química , Antocianinas/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Microondas , Fenoles/química , Fenoles/aislamiento & purificación , Plantas/metabolismo , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA