Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645986

RESUMEN

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Simulación del Acoplamiento Molecular , Farmacología en Red , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Animales , Ratones , Plantas Medicinales/química , Masculino , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Luteolina/farmacología , Luteolina/química , Ratones Endogámicos C57BL , Humanos
2.
Phytomedicine ; 129: 155566, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38565001

RESUMEN

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE: We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS: The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS: XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS: XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Medicamentos Herbarios Chinos , Hipocampo , MicroARNs , Plasticidad Neuronal , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Animales , MicroARNs/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Ratas , Fármacos Neuroprotectores/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Receptor trkB/metabolismo
3.
Anal Chem ; 96(13): 5315-5322, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511619

RESUMEN

Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.


Asunto(s)
Nanopartículas , Nanotubos , Técnicas Fotoacústicas , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Staphylococcus aureus , Nanomedicina Teranóstica/métodos
4.
J Ethnopharmacol ; 328: 118126, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556140

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY: To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS: The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS: Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS: BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Remielinización , Ratones , Animales , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Receptores Acoplados a Proteínas G/genética , MicroARNs/genética , Proteínas del Tejido Nervioso
5.
CNS Neurosci Ther ; 30(3): e14231, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183394

RESUMEN

INTRODUCTION: Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS: A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS: Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION: This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dopamina , Humanos , Simulación del Acoplamiento Molecular , Dopamina/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Metabolómica
6.
Phytomedicine ; 121: 155086, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783132

RESUMEN

BACKGROUND: Astragaloside IV (AS-IV) is the main active component of "Astragalus membranaceus (Fisch.) Bunge, a synonym of Astragalus propinquus Schischkin (Fabaceae)", which demonstrated to be useful for the treatment of intracerebral hemorrhage (ICH). However, due to the low bioavailability and barrier permeability of AS-IV, the gut microbiota may be an important key regulator for AS-IV to work. OBJECTIVE: To explore the influences of gut microbiota on the effects of AS-IV on ICH. METHODS: Mice were randomly divided into five groups: sham, ICH, and AS-IV-treated groups (25 mg/kg, 50 mg/kg, and 100 mg/kg). Behavioral tests, brain histopathology, and immunohistochemistry analysis were used to evaluate the degree of brain injury. Western blot was employed to verify peri­hematoma inflammation. The plasma lipopolysaccharide (LPS) leakage, the fluorescein isothiocyanate-dextran permeability, the colonic histopathology, and immunohistochemistry were detected to evaluate the barrier function of intestinal mucosal. Moreover, 16S rDNA sequencing and metabolomic analysis was applied to screen differential bacteria and metabolites, respectively. The correlation analysis was adopted to determine the potential relationship between differential bacteria and critical metabolites or neurological deficits. RESULTS: AS-IV alleviated neurological deficits, neuronal injury and apoptosis, and blood-brain barrier disruption. This compound reduced tumor necrosis factor (TNF)-α expression, increased arginase (Arg)-1 and interleukin (IL)-33 levels around the hematoma. Next, 16S rRNA sequencing indicated that AS-IV altered the gut microbiota, and inhibited the production of conditional pathogenic bacteria. Metabolomic analysis demonstrated that AS-IV regulated the serum metabolic profiles, especially the aminoacid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Additionally, AS-IV mitigated intestinal barrier damage and LPS leakage. CONCLUSION: This study provides a new perspective on the use of AS-IV for the treatment of ICH. Among them, gut microbiota and its metabolites may be the key regulator of AS-IV in treating ICH.


Asunto(s)
Microbioma Gastrointestinal , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , ARN Ribosómico 16S , Hemorragia Cerebral/tratamiento farmacológico , Bacterias , Hematoma
7.
Plant Dis ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622271

RESUMEN

Bupleurum falcatum is a Apiaceae family herbal medicinal plant, which has the functions of soothing liver, relieving depression, relieving fever, dispelling stagnation, and regulating menstruation. B. falcatum roots have been used in Chinese herbal formbulary for at least 2000 years (Ahmadimoghaddam et al. 2021). In June 2021, infected leaves of B. falcatum that had dark brown, circular, elliptical or irregular shaped lesions or severely withered were obtained in Yichang (30.75 ° N,111.24 ° E), Hubei, China. Disease incidence was approximately 40% in the 20 hm2 B. falcatum plantation base. Fifteen small pieces (3 mm) were cut from the junction between disease and health of surface sterilized (with 75% alcohol) leaves and then plated on potato dextrose agar (PDA). After 3 days incubation, eight isolates with the same colony morphology were sub-cultured and purified by hyphal tip isolation. Isolate CHYB1 cultured on potato dextrose agar (PDA) was selected for identification. The colony was initially white and later producing gray and brown. Pycnidia were dark, spherical or flat spherical, and 78.3 to 137.4 µm in diameter. Conidia were oval mostly, smooth, aseptate, and 18 the size was 3.7 to 5.1 × 1.6 to 2.5 µm. Following DNA extraction, PCR was performed using the TSINGKE 2×T5 Direct PCR Mix kit. Target areas of amplification were the internal transcribed spacer (ITS) and beta-tubulin gene (TUB2) using ITS1/4 (White et al. 1990) Btu-F-F01/Btu-F-R01 primers (Wang et al. 2014), respectively. BLAST analysis of the ITS sequence (MZ818334.1) had 99% similarity to a 498 bp portion of D. glomerata sequence in GenBank (KR709012.1) and TUB2 sequence (OL439060) had 100% similarity to a 323 bp portion of D. glomerata sequence in GenBank (LT592974.1). All isolates (CHYB1-8) were taken for a pathogenicity test in laboratory on surface-disinfested leaves of B. falcatum. Mycelial plugs (5 mm) were excised from the margin of colony cultured for 5 days, and placed on surface-disinfested leaves of potted B. falcatum which involved creating small wounds. The potted plants were placed in a closed bucket to keep 80% relative humidity. Controls were inoculated with non-colonized PDA plugs (5 mm). All treatments had three replicates. On the inoculated B. falcatum, the leaves of B. falcatum appeared brown spot and been covered with off-white hyphae 7 DPI. By comparision, the control leaves had no symptoms. The pathogen was reisolated from the inoculated leaves and exhibited same morphological characteristics and ITS sequence as those of D. glomerata. D. glomerata was reported to cause round leaf spot on Sophora tonkinensis Gagnep and black spot disease of Actinidia chinensis in China (Pan et al. 2018; Song et al. 2020). To our knowledge, this is the first report of leaf spot caused by D. glomerata on B. falcatum in China.

8.
Pharm Biol ; 61(1): 1054-1064, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37416997

RESUMEN

CONTEXT: Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE: To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS: HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS: HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Chalcona , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo , Axones , Regeneración Nerviosa , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Quinonas/farmacología , Chalcona/farmacología , Metabolómica
9.
J Ethnopharmacol ; 317: 116823, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37348798

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herbal formula Xuefu Zhuyu decoction (XFZYD) is a classic formula in the category of invigorating blood circulation and resolving blood stasis. It has been proven to improve the neurological and ethological prognosis of traumatic brain injury. XFZYD promotes synaptic and axonal regeneration after traumatic brain injury, which is functionally modulated by the N6-methyladenosine (m6A) modification of RNA. However, the epigenetic effects of XFZYD on m6A modification remain unknown. AIM OF THE STUDY: To explore how XFZYD protects against traumatic brain injury induced by controlled cortical impact (CCI) injury by altering RNA m6A modification. MATERIALS AND METHODS: The modified neurological severity scoring and Morris water maze were performed to evaluate the neuroprotective effects of XFZYD for 14 days and screen the dose. Then, dot blot, western blotting, and methylated RNA immunoprecipitation sequencing (MeRIP-Seq) were used to explore changes in RNA m6A modification in the perilesional cortex. The Metascape platform was used to analyze the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway of the differential m6A-tagged genes. Furthermore, MeRIP-qPCR was conducted to quantify differences in the hub differential m6A modification gene brain-derived neurotrophic factor (Bdnf). RESULTS: XFZYD significantly ameliorated the neurological deficits, spatial learning, and memory impairments in rats post-CCI on day 14. XFZYD enhanced the m6A level, and the expression of METTL14 and YTHDC2 in the perilesional cortex of CCI rats. In all three groups, the 3'-untranslated regions and coding sequence were primarily enriched for m6A peaks. XFZYD reversed the increased proportion of 3'-untranslated regions, and the decreased proportion of coding sequence and 5'-untranslated regions post-CCI. Moreover, XFZYD markedly downregulated 41 elevated m6A-tagged transcripts and upregulated 119 decreased m6A-tagged transcripts following CCI. Gene ontology and KEGG pathway analysis revealed that XFZYD-regulated m6A-tagged transcripts were predominantly enriched in synapse assembly, synaptic plasticity, learning or memory, and MAPK signaling pathway. Then, the hub-regulated m6A-tagged gene BDNF was identified. Both the m6A methylation level and the protein level of BDNF were ascended by XFZYD treatment. CONCLUSION: XFZYD improves neurological deficits, spatial learning and memory impairments in rats post-TBI probably through increasing the expression of METTL14 and BDNF in the cortex. Our study highlights a novel post-transcriptional regulation mechanism mediated by herbal medicine for traumatic brain injury treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , ARN/uso terapéutico , Regiones no Traducidas
10.
Front Microbiol ; 14: 1152865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323912

RESUMEN

Introduction: Sclerotium rolfsii Sacc. is a globally dispersed pathogenic fungus that causes southern blight disease in many crops and Chinese herbal medicine. The high degree of variation and diversity in the fungi altered population genetic structure. Therefore, the important factors of variation within the pathogen population should be considered during the development of management strategies for the disease. Methods: In this study, S. rolfsii isolates from 13 hosts in 7 provinces of China were collected and analyzed to identify their morphological features and perform molecular characterization. To develop EST-SSR primers, transcriptome sequencing was performed on isolated CB1, and its SSR loci were comprehensively analyzed. In addition, we analyzed the polymorphisms among different populations based on screened EST-SSR primers. Results: The results showed that all of these clean reads with total 36,165,475 assembled bases were clustered into 28,158 unigenes, ranged from 201 bp to 16,402 bp on the length, of which the average length was 1,284 bp. Of these, the SSR sequence appeared at an average interval of 15.43 kB, and the frequency of SSR was 0.0648 SSR/kB. Polymorphism of 9 primers was observed among 22 populations, and was verified by the Shannon's index (average = 1.414) and polymorphic information index (> 0.50). The genetic diversity analysis revealed diversity in all host populations and geographical populations. Further, molecular variance analysis (AMOVA) showed that the differences between groups were mainly related to geographical location. Based on cluster analysis, the 7 populations were roughly divided into 3 groups, and the results were highly consistent with those based on the geographical location, ultimately aligning with the results of STRUCTURE analysis. Discussion: The findings build on current knowledge of the distribution of S. rolfsii in the southwest area of China, adding value to current knowledge base on the population structure and genetic diversity of S. rolfsii, specifically in the context of Chinese herbal medicine cultivation in China. Overall, our findings may provide valuable information for breeding of crops with enhanced resistance toward S. rolfsii.

11.
Front Microbiol ; 14: 1180368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303806

RESUMEN

Introduction: The ecological balance of the plant microbiome, as a barrier against pathogens, is very important for host health. Coptis chinensis is one of the important medicinal plants in China. In recent years, Illumina Miseq high-throughput sequencing technology was frequently used to analyze root rot pathogens and the effects of root rot on rhizosphere microorganisms of C. chinensis. But the effects of root rot infection on rhizosphere microecological balance of C. chinensis have received little attention. Methods: In this study, Illumina Miseq high-throughput sequencing technology was applied to analyze the impact on microbial composition and diversity of C. chinensis by root rot. Results: The results showed that root rot infection had significant impact on bacterial α-diversity in rhizome samples, but had no significant effect on that in leaf samples and rhizosphere soil samples, while root rot infection exhibited significant impact on the fungal α-diversity in leaf samples and rhizosphere soil samples, and no significant impact on that in rhizome samples. PCoA analysis showed that the root rot infection had a greater impact on the fungal community structure in the rhizosphere soil, rhizome, and leaf samples of C. chinensis than on the bacterial community structure. Root rot infection destroyed the microecological balance of the original microbiomes in the rhizosphere soil, rhizome, and leaf samples of C. chinensis, which may also be one of the reasons for the serious root rot of C. chinensis. Discussion: In conclusion, our findings suggested that root rot infection with C. chinensis disrupts microecological balance of rhizosphere soil and endophytic microbiomes. The results of this study can provide theoretical basis for the prevention and control of C. chinensis root rot by microecological regulation.

12.
Chin Med ; 18(1): 40, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069580

RESUMEN

BACKGROUND: The oral bioavailability and blood-brain barrier permeability of many herbal products are too low to explain the significant efficacy fully. Gut microbiota and liver can metabolize herbal ingredients to more absorbable forms. The current study aims to evaluate the ability of a novel biotransformation-integrated network pharmacology strategy to discover the therapeutic mechanisms of low-bioavailability herbal products in neurological diseases. METHODS: A study on the mechanisms of Astragaloside IV (ASIV) in treating intracerebral hemorrhage (ICH) was selected as an example. Firstly, the absorbed ASIV metabolites were collected by a literature search. Next, the ADMET properties and the ICH-associated targets of ASIV and its metabolites were compared. Finally, the biotransformation-increased targets and biological processes were screened out and verified by molecular docking, molecular dynamics simulation, and cell and animal experiments. RESULTS: The metabolites (3-epi-cycloastragenol and cycloastragenol) showed higher bioavailability and blood-brain barrier permeability than ASIV. Biotransformation added the targets ASIV in ICH, including PTK2, CDC42, CSF1R, and TNF. The increased targets were primarily enriched in microglia and involved in cell migration, proliferation, and inflammation. The computer simulations revealed that 3-epi-cycloastragenol bound CSF1R and cycloastragenol bound PTK2 and CDC42 stably. The In vivo and in vitro studies confirmed that the ASIV-derived metabolites suppressed CDC42 and CSF1R expression and inhibited microglia migration, proliferation, and TNF-α secretion. CONCLUSION: ASIV inhibits post-ICH microglia/macrophage proliferation and migration, probably through its transformed products to bind CDC42, PTK2, and CSF1R. The integrated strategy can be used to discover novel mechanisms of herbal products or traditional Chinses medicine in treating diseases.

13.
Fish Shellfish Immunol ; 134: 108574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731810

RESUMEN

A 70-day feeding trial was conducted to study the effects of dietary nucleotide, yeast cell wall (containing 20% ß -glucan) and their combination on growth performance, feed utilization and immune response of grass carp (Ctenopharyngodon idella) with 69.97 ± 0.05 g of initial body weight. Four isonitrogenous (about 38% crude protein) and isolipidic (about 5% crude lipid) diets were established. Based on the control diet (CD), the other three experimental diets were prepared by adding 0.01% of nucleotide (NT), 0.1% of yeast cell wall (YCW) and NT (0.01%) +YCW (0.1%), respectively. Results showed that no significant difference was found in survival of grass carp ranging from 94.44% to 97.78% among all the groups (P > 0.05). Compared with the control group, weight gain rate, muscle crude protein content, serum protein, trypsin and chymotrypsin activities in midgut, lysozyme and immunoglobulin M in serum significantly increased in fish fed the YCW diet (P < 0.05). The significantly highest weight gain rate, villus height and digestive enzyme activities in midgut and innate immune parameters in serum were found in fish fed the NT + YCW diet (P < 0.05). The gene expressions of ß-defensin, hepcidin, il-10 and tgf-ß1 in the midgut, and tor and s6k1 in liver significantly increased in fish fed the NT + YCW diet. Meanwhile, the gene expressions of il-1ß and tnf-α in the midgut decreased significantly (P < 0.05). The liver histology showed the better development in dietary NT and/or YCW supplemented groups than those in the control group. In conclusion, combination of dietary NT and YCW had significantly synergetic improvements on the growth, feed utilization, digestive enzymes, innate immunity and histology of midgut and liver of grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Carpas/metabolismo , Dieta , Suplementos Dietéticos , Inmunidad Innata , Pared Celular , Alimentación Animal/análisis , Proteínas de Peces/genética
15.
Environ Sci Pollut Res Int ; 30(11): 28916-28924, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36401015

RESUMEN

This research surveyed the concentrations of five organophosphorus pesticides (OPs) in vegetables with the purpose of assessing the potential integrated health risks of residents. From 2018 to 2020, 870 samples of eight kinds of vegetables from Zhejiang Province were collected. Gas chromatography coupled with a flame photometric detector (GC-FPD) analyzed the five OPs. OPs were most frequently detected in celery (18.9% of samples), cowpeas (18.3% of samples), and leeks (16.9% of samples) compared to other vegetables. Among the 11 cities in Zhejiang, the cities with high detection rates of OPs were Ningbo and Hangzhou. The integrated concentrations of OPs in different cities ranged from 71.9 to 376 µg/kg. The cumulative risk assessment revealed that the estimated daily intake (EDI) of leek in Wenzhou was the highest, which was 0.0077 (mg/kg bw) and 0.0059 (mg/kg bw) in adults and children respectively. The health risks of residents who consume these vegetables were within a safe range. The data provided demonstrate the distribution and potential health hazards of OPs in commonly consumed vegetables.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Adulto , Niño , Humanos , Plaguicidas/análisis , Verduras/química , Compuestos Organofosforados/análisis , Cromatografía de Gases/métodos , Cebollas , China , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/análisis
16.
Artículo en Inglés | MEDLINE | ID: mdl-36349188

RESUMEN

Identifying the underlying mechanisms and exploring effective therapies for intracerebral hemorrhage (ICH) are urgently needed. Here, we aim to elucidate the potential roles and underlying mechanisms of Buyang Huanwu decoction (BYHWD) in ICH. In the first set of experiments, rats were randomly divided into five groups: Sham, ICH, ICH + sodium oxamate (OXA), ICH + BYHWD, and ICH + BYHWD + OXA. The lactate level around the hematoma was evaluated. PCNA+/vWF+ nuclei were observed. Additionally, an online bioinformatics analysis tool was used to predict the BYHWD druggable targets related to angiogenesis. Then, we validated these predictions. In the second set, exogenous sodium L-lactate (Lac) was infused into the intact brains of rats. Rats were randomly divided into three groups: Sham, Lac, and Lac + YC-1. The numbers of PCNA+/vWF+ nuclei and the expression of HIF-1α and VEGF were evaluated. In the first set of experiments, compared with the ICH group, the BYHWD group exhibited significantly increased numbers of PCNA+/vWF+ nuclei, and neurological dysfunction was markedly improved. Bioinformatics analysis revealed that the improvements caused by BYHWD indicated a role for the HIF-1α pathway. The HIF-1α and VEGF protein levels were upregulated after BYHWD administration. Moreover, we verified that lactate was involved in the predicted mechanisms. In the second set, lactate facilitated angiogenesis and HIF-1α and VEGF expression. Co-infusion with a HIF-1α inhibitor, YC-1, significantly inhibited these effects. Our data suggest that the pharmacological effects of BYHWD involve lactate-induced angiogenesis, these data may provide new evidence for its use in ICH.

17.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364466

RESUMEN

A rapid, efficient, simple, and high-throughput method for the simultaneous determination of 108 pesticide residues in three traditional Chinese medicines (TCMs) was established, comprising an improved QuEChERS method in combination with HPLC-MS/MS based on mixed samples. A quantity of 10 mL of acetonitrile was used as extraction solvent, and 10 mg of amino-modified multi-walled carbon nanotubes (MWCNTs-NH2) and 150 mg of anhydrous magnesium sulfate (MgSO4) were selected as sorbents for dispersive solid phase extraction. The performance of the method was verified according to the analytical quality control standards of SANTE/11813/2017 guidelines. With good linearity (R2 > 0.9984) in the range of 2−200 µg/L for all pesticides in the selected matrices, and good accuracy, precision, and high sensitivity, the recoveries were in the range of 70−120% for more than 95% of the pesticides, with a relative standard deviation (RSD) of less than 16.82% for all. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.01−3.87 µg/kg and 0.07−12.90 µg/kg, respectively, for Fritillaria thunbergii Miq (F. thunbergii), Chrysanthemum Morifolium Ramat (C. morifolium), and Dendrobium officinale Kimura et Migo (D. officinale). The method was successfully applied to 60 batches of actual samples from different regions.


Asunto(s)
Nanotubos de Carbono , Residuos de Plaguicidas , Plaguicidas , Residuos de Plaguicidas/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem/métodos , Nanotubos de Carbono/química , Extracción en Fase Sólida/métodos , China
18.
Artículo en Inglés | MEDLINE | ID: mdl-36164400

RESUMEN

Background: Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properties against TBI. Transfer RNA (tRNA)-derived small RNAs, that is, tsRNAs (a group of small RNAs derived from tRNAs), are multifunctional regulatory noncoding RNAs generated under pressure and implicated in the progression of TBI. Methods: A TBI model was successfully constructed using rats. We further performed sequencing and omics analyses to identify novel tsRNAs as drug targets for XFZYD therapy against TBI in the rat hippocampus. qPCR assays were used to further verify the experimental results. Gene Ontology (GO) was used to analyze the signaling pathways of downstream target genes of tsRNAs in the XFZYD-regulated TBI model. qPCR was used to detect the influence of overexpressed tsRNA mimics/inhibitors on their target genes in PC12 cells. Results: Our RNA-Seq data illustrate that 11 tsRNAs were mediated by XFZYD. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway. We also confirmed that Pi4kb, Mlh3, Pcdh9, and Ppp1cb were target genes of 2 XFZYD-regulated tsRNAs in the hippocampus of a rat model and PC12 cells. Furthermore, biological function analysis revealed the potential therapeutic effects of tsRNAs, and the results showed that Mapk1 and Gnai1 were related genes for XFZYD therapy against TBI. Conclusion: Our work successfully illuminates the efficiency of XFZYD in the treatment of TBI. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway in a TBI rat model.

19.
Phytomedicine ; 102: 154168, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35623157

RESUMEN

BACKGROUND: Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY: We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS: High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS: The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS: The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Espectrometría de Masas en Tándem , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Medicamentos Herbarios Chinos , Masculino , ARN de Transferencia/uso terapéutico , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA