Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Food Chem ; 441: 138295, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38183719

RESUMEN

This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.


Asunto(s)
Cannabidiol , Nanopartículas , Nanoestructuras , Nanopartículas/química , Portadores de Fármacos/química , Promoción de la Salud , Nanoestructuras/química , Aceite de Soja , Emulsionantes/química , Tamaño de la Partícula , Polisorbatos
2.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144531

RESUMEN

This research work investigates the development of alginate-based films incorporating phenolic compounds extracted from Amaranthus cruentus grain using different solvents. Alginate, glycerol, and amaranth grain phenolic compounds at various concentrations were used to produce the films. An experimental Central Composite Rotatable Design (CCRD) was used to evaluate the effect of these variables on different film's properties, i.e., water vapor permeability, hydrophobicity, moisture content, solubility, thermal, mechanical, and optical properties. This study demonstrated that high phenolic compound content and antioxidant capacity were obtained from amaranth grain using ethanol as the extraction solvent. Alginate films incorporating amaranth phenolic compounds were successfully manufactured, and this study can be used to tailor the formulation of alginate films containing amaranth phenolic compounds, depending on their final food application. For example, less flexible but more resistant and water-soluble films can be produced by increasing the alginate concentration, which was confirmed by a Principal Component Analysis (PCA) and Partial Least Squares (PLS) analysis. This study showed that active alginate films with amaranth phenolic compounds can be tailored to be used as food packaging material with potential antioxidant activity.


Asunto(s)
Amaranthus , Alginatos , Antioxidantes/análisis , Antioxidantes/farmacología , Grano Comestible/química , Etanol/análisis , Glicerol/análisis , Fenoles/análisis , Extractos Vegetales , Solventes/análisis , Vapor/análisis
3.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072026

RESUMEN

Pineapple is consumed on a large scale around the world due to its appreciated sensorial characteristics. The industry of minimally processed pineapple produces enormous quantities of by-products (30-50%) which are generally undervalued. The end-of-life of pineapple by-products (PBP) can be replaced by reuse and renewal flows in an integrated process to promote economic growth by reducing consumption of natural resources and diminishing food waste. In our study, pineapple shell (PS) and pineapple core (PC), vacuum-packed separately, were subjected to moderate hydrostatic pressure (225 MPa, 8.5 min) (MHP) as abiotic stress to increase bromelain activity and antioxidant capacity. Pressurized and raw PBP were lyophilized to produce a stable powder. The dehydrated samples were characterized by the following methodologies: chemical and physical characterization, total phenolic compounds (TPC), antioxidant capacity, bromelain activity, microbiology, and mycotoxins. Results demonstrated that PBP are naturally rich in carbohydrates (66-88%), insoluble (16-28%) and soluble (2-4%) fiber, and minerals (4-5%). MHP was demonstrated to be beneficial in improving TPC (2-4%), antioxidant activity (2-6%), and bromelain activity (6-32%) without affecting the nutritional value. Furthermore, microbial and mycotoxical analysis demonstrated that powdered PC is a safe by-product. PS application is possible but requires previous decontamination to reduce the microbiological load.


Asunto(s)
Ananas/química , Ananas/fisiología , Antioxidantes/química , Alimentos Funcionales/análisis , Benzotiazoles/química , Compuestos de Bifenilo/química , Bromelaínas/análisis , Carbohidratos/química , Técnicas de Química Analítica , Color , Fibras de la Dieta , Embalaje de Alimentos , Conservación de Alimentos , Liofilización , Frutas/química , Micotoxinas/química , Valor Nutritivo , Fenol/química , Picratos/química , Polvos , Presión , Ácidos Sulfónicos/química , Agua/química
4.
Int J Pharm ; 604: 120534, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33781887

RESUMEN

Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.


Asunto(s)
Curcumina , Nanoestructuras , Neoplasias , Disponibilidad Biológica , Humanos , Micelas , Neoplasias/tratamiento farmacológico
5.
Orphanet J Rare Dis ; 16(1): 104, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639975

RESUMEN

BACKGROUND: X-linked hypophosphatemia (XLH) is a hereditary rare disease caused by loss-of-function mutations in PHEX gene leading tohypophosphatemia and high renal loss of phosphate. Rickets and growth retardation are the major manifestations of XLH in children, but there is a broad phenotypic variability. Few publications have reported large series of patients. Current data on the clinical spectrum of the disease, the correlation with the underlying gene mutations, and the long-term outcome of patients on conventional treatment are needed, particularly because of the recent availability of new specific medications to treat XLH. RESULTS: The RenalTube database was used to retrospectively analyze 48 Spanish patients (15 men) from 39 different families, ranging from 3 months to 8 years and 2 months of age at the time of diagnosis (median age of 2.0 years), and with XLH confirmed by genetic analysis. Bone deformities, radiological signs of active rickets and growth retardation were the most common findings at diagnosis. Mean (± SEM) height was - 1.89 ± 0.19 SDS and 55% (22/40) of patients had height SDS below-2. All cases had hypophosphatemia, serum phosphate being - 2.81 ± 0.11 SDS. Clinical manifestations and severity of the disease were similar in both genders. No genotype-phenotype correlation was found. Conventional treatment did not attenuate growth retardation after a median follow up of 7.42 years (IQR = 11.26; n = 26 patients) and failed to normalize serum concentrations of phosphate. Eleven patients had mild hyperparathyroidism and 8 patients nephrocalcinosis. CONCLUSIONS: This study shows that growth retardation and rickets were the most prevalent clinical manifestations at diagnosis in a large series of Spanish pediatric patients with XLH confirmed by mutations in the PHEX gene. Traditional treatment with phosphate and vitamin D supplements did not improve height or corrected hypophosphatemia and was associated with a risk of hyperparathyroidism and nephrocalcinosis. The severity of the disease was similar in males and females.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Enfermedades Genéticas Ligadas al Cromosoma X , Hipofosfatemia , Niño , Preescolar , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Femenino , Humanos , Masculino , Mutación/genética , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Estudios Retrospectivos
6.
J Sci Food Agric ; 101(5): 1963-1978, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32914435

RESUMEN

BACKGROUND: The olive oil industry generates significant amounts of semi-solid wastes, namely olive pomace. Olive pomace is a by-product rich in high-value compounds (e.g. dietary fibre, unsaturated fatty acids, polyphenols) widely explored to obtain new food ingredients. However, conventional extraction methods frequently use organic solvents, while novel eco-friendly techniques have high operational costs. The development of powdered products without any extraction step has been proposed as a more feasible and sustainable approach. RESULTS: The present study fractionated and valorized the liquid and pulp fraction of olive pomace obtaining two stable and safe powdered ingredients, namely a liquid-enriched powder (LOPP) and a pulp-enriched powder (POPP). These powders were characterized chemically, and their bioactivity was assessed. LOPP exhibited a significant amount of mannitol (141 g kg-1 ), potassium (54 g kg-1 ) and hydroxytyrosol derivatives (5 mg g-1 ). POPP exhibited a high amount of dietary fibre (620 g kg-1 ) associated with a significant amount of bound phenolics (7.41 mg GAE g-1 fibre DW) with substantial antioxidant activity. POPP also contained an unsaturated fatty acid composition similar to that of olive oil (76% of total fatty acids) and showed potential as a reasonable source of protein (12%). Their functional properties (solubility, water-holding and oil-holding capacity), antioxidant capacity and antimicrobial activity were also assessed, and their biological safety was verified. CONCLUSIONS: The development of olive pomace powders for application in the food industry could be a suitable strategy to add value to olive pomace and obtain safe multifunctional ingredients with higher health-promoting effects than dietary fibre and polyphenols. © 2020 Society of Chemical Industry.


Asunto(s)
Olea/química , Extractos Vegetales/análisis , Residuos/análisis , Fibras de la Dieta/análisis , Ácidos Grasos/química , Inocuidad de los Alimentos , Frutas/química , Polifenoles/análisis , Polvos/química
7.
Foods ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256241

RESUMEN

Dehydrated pineapple by-products enriched in bromelain using a hydrostatic pressure treatment (225 MPa, 8.5 min) were added in marinades to improve beef properties. The steaks from the silverside cut (2 ± 0.5 cm thickness and weight 270 ± 50 g), characterized as harder and cheaper, were immersed in marinades that were added to dehydrated and pressurized pineapple by-products that corresponded to a bromelain concentration of 0-20 mg tyrosine, 100 g-1 meat, and 0-24 h time, according to the central composite factorial design matrix. Samples were characterized in terms of marination yield, pH, color, and histology. Subsequently, samples were cooked in a water-bath (80 °C, 15 min), stabilized (4 °C, 24 h), and measured for cooking loss, pH, color, hardness, and histology. Marinades (12-24 h) and bromelain concentration (10-20 mg tyrosine.100 g-1 meat) reduced pH and hardness, increased marination yield, and resulted in a lighter color. Although refrigeration was not an optimal temperature for bromelain activity, meat hardness decreased (41%). Thus, the use of pineapple by-products in brine allowed for the valorization of lower commercial value steak cuts.

9.
Food Funct ; 11(3): 2238-2254, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101211

RESUMEN

Olive pomace is a semisolid by-product with great potential as a source of bioactive compounds. Using its soluble fraction, a liquid-enriched powder (LOPP) was obtained, exhibiting a rich composition in sugars, polyphenols and minerals, with potential antioxidant, antihypertensive and antidiabetic health benefits. To validate the potential of LOPP as a functional ingredient the effect of the gastrointestinal tract on its bioactive composition and bioactivities was examined. Polyphenols and minerals were the most affected compounds; however, a significant bioaccessibility of potassium and hydroxytyrosol was verified (≥57%). As a consequence, the LOPP bioactivities were only moderately affected (losses around 50%). For example, 57.82 ± 1.27% of the recovered antioxidant activity by ORAC was serum-available. From an initial α-glucosidase inhibition activity of 87.11 ± 1.04%, at least 50% of the initial potential was retained (43.82 ± 1.14%). Regarding the initial ACE inhibitory activity (91.98 ± 3.24%), after gastrointestinal tract losses, significant antihypertensive activity was retained in the serum-available fraction (43.4 ± 3.65%). The colon-available fraction also exhibited an abundant composition in phenolics and minerals. LOPP showed to be a potential functional ingredient not only with potential benefits in preventing cardiovascular diseases but also in gut health.


Asunto(s)
Antioxidantes/farmacocinética , Colon/metabolismo , Digestión , Olea , Aceites de Plantas/farmacocinética , Humanos , Solubilidad
10.
Food Funct ; 11(1): 305-317, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31799527

RESUMEN

Whey protein nanostructures can be used as vehicles for the incorporation of nutraceuticals (e.g., antioxidants or vitamins) aimed at the development of functional foods, because nanostructures provide greater protection, stability and controlled release to such nutraceuticals. Fundamental knowledge is required regarding the behaviour of nanostructures when associated with nutraceuticals and their interactions with real food matrices. In this study, a lactoferrin (LF) nanohydrogel was developed to encapsulate curcumin (nutraceutical model) and its behaviour was evaluated in terms of the LF structure and the interaction with curcumin. The release kinetics of curcumin from LF nanohydrogels was also assessed using food simulants with a hydrophilic nature (10% ethanol) and lipophilic nature (50% ethanol). This system was able to encapsulate curcumin at 80 µg mL-1 with an efficiency of ca. 90% and loading capacity of ca. 3%. Through spectroscopic characterisation, it is suggested that LF and curcumin bind via hydrophobic interactions and the average binding distance between LF and curcumin was found to be 1.91 nm. Under refrigerated conditions (4 °C), this system showed stability for up to 35 days, while at room temperature (25 °C) it was shown to be stable for up to 14 days of storage. The LF nanohydrogel presented higher release rates of curcumin in a lipophilic food simulant (stable after ca. 7 h) as compared to a hydrophilic simulant (stable after ca. 4 h). LF nanohydrogels were successfully incorporated into a gelatine matrix and showed no degradation in this process. The behaviour of this system and the curcumin release kinetics in food stimulants make the LF nanohydrogel an interesting system to associate with lipophilic nutraceuticals and to incorporate in refrigerated food products of a hydrophilic nature.


Asunto(s)
Curcumina/química , Lactoferrina/química , Nanoestructuras/química , Proteína de Suero de Leche/química , Suplementos Dietéticos , Hidrogeles/química
11.
J Sci Food Agric ; 100(1): 218-224, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31512242

RESUMEN

BACKGROUND: Nowadays, fat replacement in meat products is a matter of concern in the meat industry. The objective of this study was to evaluate the replacement of pork backfat with two oleogels of linseed in dry-cured sausages. RESULTS: Five batches of dry-cured sausages were prepared with two oleogels, a mixture of γ-oryzanol and ß-sitosterol (SO) and beeswax (B), at two levels of replacement (20% and 40%) (SO-20, SO-40, B-20, and B-40, respectively) and a control batch. The fatty acid profile improved in terms of nutrition: the polyunsaturated fatty acid / saturated fatty acid (PUFA/SFA) and n-6/n-3 ratio was about 1.41 and 0.93 for the higher levels of replacement, SO-40 and B-40, respectively. Quality parameters such as pH and color also changed with the inclusion of oleogels, resulting in changes in the sensory quality. CONCLUSION: Oleogels based on linseed enabled the replacement of pork backfat in fermented sausages. Depending on the level of fat substitution, such oleogels could replace fat in dry-cured sausages at the industrial level. © 2019 Society of Chemical Industry.


Asunto(s)
Sustitutos de Grasa/análisis , Manipulación de Alimentos/métodos , Aceite de Linaza/análisis , Productos de la Carne/análisis , Animales , Ácidos Grasos/análisis , Fermentación , Humanos , Compuestos Orgánicos/análisis , Porcinos , Gusto
12.
J Sci Food Agric ; 99(7): 3318-3325, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30569530

RESUMEN

BACKGROUND: Phytosterols, in particular a mixture of pure γ-oryzanol and ß-sitosterol, develop a tubular system that is able to structure oil. In this study, different concentrations of a combination of γ-oryzanol and a commercial phytosterol mixture, Vitaesterol®, were used for the development of edible oil oleogels. RESULTS: Small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) were used to characterize at nano and molecular scale the aforementioned oleogels and confirm the formation of sterols-based hollow tubule structures. Increased hardness was observed with the increase of gelator content used in oleogel manufacturing. The produced oleogels showed promising features such as tailored mechanical strength and low opacity, which are important features when considering their incorporation into food products. CONCLUSION: Despite differences in gel strength, oleogels exhibited textural characteristics that make these structures suitable for incorporation in food products. The oil migration profile associated with these oleogels can provide a solution for the controlled release of lipophilic compounds as well as for the retention of oil in cooked food products. © 2018 Society of Chemical Industry.


Asunto(s)
Fitosteroles/análisis , Aceites de Plantas/análisis , Compuestos Orgánicos/análisis , Dispersión del Ángulo Pequeño , Difracción de Rayos X
13.
Food Res Int ; 111: 168-177, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007673

RESUMEN

In this study the effect of lecithin (L) addition and solvent quality in a well-established oleogel system formed by ß-sitosterol and γ-oryzanol (BG) was investigated. Medium chain triglycerides (MCT) and sunflower oil (SFO) were used as triglycerides and hexadecane (HEX) as a model of linear hydrocarbon. Lecithin was proposed due to its natural and versatile properties, showing different functionalities such as emulsifier and co-oleogelator. A study based on hierarchical organization of structured oil was performed applying techniques for bulk, meso and nanoscale. Self-sustained structures could no longer be observed after 40 wt% of BG replacement by lecithin. Small-angle X-ray scattering showed that the formed nanostructures (building blocks) were dependent on type of solvent and BG:L ratio in the mixture of oleogelators. Differential scanning calorimetry showed that stability against temperature was improved decreasing the polarity of the oil, and a time-dependent self-assembly of hybrid systems was observed from thermal and rheological measurements. Microscopy images exhibited changes on typical fibril aggregation of BG as lecithin was added, which promoted to a certain extent the suppression of ribbons. Oscillatory shear and uniaxial compression measurements were influenced by BG:L ratio and solvent mainly at higher lecithin amount. The combination of BG and MCT appeared to be the most affected by lecithin incorporation whereas SFO rendered harder oleogels. These results could contribute to understand the role of both lecithin and solvent type influencing the host oleogelator structure. It was hypothesized that intermolecular BG complex formation is hindered by lecithin, besides this phospholipid also might coexist as a different phase, causing structural changes in the gel network. Addressing the role of co-oleogelator it can provide the opportunity to tune soft materials with adjusted properties.


Asunto(s)
Lecitinas/análisis , Lecitinas/química , Fitosteroles/análisis , Fitosteroles/química , Rastreo Diferencial de Calorimetría , Cristalización , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Fenilpropionatos/química , Sitoesteroles/química , Aceite de Girasol/síntesis química , Triglicéridos/química
14.
Food Funct ; 9(4): 2456-2468, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29632933

RESUMEN

Here we have proposed to evaluate potential replacers of fat in sponge cake formulations. Our investigation consisted initially of monitoring the physical-chemical changes in sponge cake batters caused by gradually replacing the vegetable fat/margarine of a control sample (standard sponge cake recipe) with galactomannan extracted from the seeds of Cassia grandis. Several samples were prepared where a 100% concentration of vegetable fat was substituted with galactomannan in different concentrations. We then compared both microscopic and macroscopic characteristics of pure fat cake batter formulations and formulations with controlled fat/galactomannan mixtures. At this first stage, rheometry and optical microscopy were employed to characterize the rheological features and air bubble distribution in the batters. In the second stage, the effects of fat substitution with galactomannan, now for the final baked cakes, were also monitored. Scanning electron microscopy (SEM) and standard sensorial tests were performed in order to correlate the final color, texture, and taste characteristics of the final sponge cake and those characteristics obtained initially for the batter. According to the statistical analysis of the data, a 75% fat replacement with galactomannan at only 1.0% concentration was achieved, while successfully maintaining surface microstructure, sensory acceptance, and rheological behavior similar to the original formulation containing only fat. Regarding vegetable fat substitution with galactomannan, our results allow us to conclude that rheometry and bubble distribution tests on the initial batters are useful indicators of the final cake quality.


Asunto(s)
Pan/análisis , Cassia/química , Sustitutos de Grasa/química , Mananos/química , Extractos Vegetales/química , Adolescente , Adulto , Culinaria , Femenino , Harina/análisis , Galactosa/análogos & derivados , Calor , Humanos , Masculino , Persona de Mediana Edad , Reología , Gusto , Viscosidad , Adulto Joven
15.
Food Funct ; 9(3): 1755-1767, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29508864

RESUMEN

In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.


Asunto(s)
Lecitinas/química , Ceras/química , Cristalización , Frutas/química , Enlace de Hidrógeno , Compuestos Orgánicos/química , Aceite de Girasol/química
16.
Plant Foods Hum Nutr ; 73(1): 68-73, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29335878

RESUMEN

This study aimed to recover bioactive compounds by solid-liquid extraction from the agro-industrial residue obtained during juçara fruits processing into pulp. A preliminary study using different solvents (methanol, ethanol and water) indicated ethanol in aqueous solution as the best solvent for antioxidants recovery. Then, a Box-Behnken design was applied considering as independent variables the solvent composition (30-70% ethanol in water), temperature (30-70 °C) and time (30-60 min), in order to evaluate the effects of these factors on antioxidant activity in juçara extract. Results showed that the extracts with higher antioxidant activity were obtained using 30% ethanol at 70 °C for 60 min; measurements included ABTS and DPPH assays, determination of total phenolic content and total monomeric anthocyanins. Furthermore, the effect of pH in antioxidants recovery was evaluated. For this purpose, the 30% ethanol solution was acidified to pH 1 and 2 with HCl. Principal component analysis showed the formation of three distinct groups: one characterized by high bioactive compounds content (pH 1.0), another with superior antioxidant activity (pH 5.75, non-acidified), and finally the group at pH 2 presenting the worst concentrations in the evaluated responses. HPLC analysis showed the presence of cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside in the extracts. Therefore, the conventional solid-liquid extraction using renewable solvent can be successfully applied to recover bioactive compounds from juçara residue, which can be used by different food industries.


Asunto(s)
Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Euterpe/química , Antocianinas/análisis , Antocianinas/aislamiento & purificación , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Etanol/química , Concentración de Iones de Hidrógeno , Metanol/química , Extractos Vegetales/química , Solventes/química
17.
Food Funct ; 8(11): 4241-4250, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29051941

RESUMEN

This study was aimed at evaluating the physical conformation and oxidative stability of beeswax oleogels when fortified by the incorporation of ß-carotene (complex-beeswax oleogels). Rheological evaluation showed the presence of a strengthened structural conformation in the oleogels with ß-carotene in comparison with that in oleogels without ß-carotene; this was verified by the increase in rheological parameters. Small angle X-ray scattering data show that the lamellar crystal structure of the oleogels with ß-carotene exhibits similar d-spacings and lower radius of gyration (Rg) values for all concentrations due to the stronger oleogel network. X-ray diffraction measurements provide useful information on the crystal polymorphism type and arrangement of the internal lamellar phases of the crystals. Oil binding capacity is also affected by the incorporation of ß-carotene into the oleogel and proven to be higher for the complex-beeswax oleogels, which enhances the ability of the oleogels to retain an oil phase within their crystalline network. The oxidative profiles of the complex-beeswax oleogels were studied during storage, and beeswax at the concentrations of 4, 6, and 8% revealed higher oxidative stability than that at the concentration of 2%. In this study, the possibility of tailoring the properties of oleogels is demonstrated considering the foreseen applications of oleogels in food products, such as in texturizers, as well their capacity to deliver bioactives and thus add value to food products.


Asunto(s)
Alimentos Fortificados/análisis , Ceras/química , beta Caroteno/química , Compuestos Orgánicos/química , Oxidación-Reducción , Reología , Análisis de Área Pequeña , Difracción de Rayos X
18.
Food Res Int ; 99(Pt 1): 435-443, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28784503

RESUMEN

The influence that ohmic heating technology and its associated moderate electric fields (MEF) have upon production of whey protein isolate cold-set gels mediated by iron addition was investigated. Results have shown that combining heating treatments (90°C, 5min) with different MEF intensities let hydrogels with distinctive micro and macro properties - i.e. particle size distribution, physical stability, rheological behavior and microstructure. Resulting hydrogels were characterized (at nano-scale) by an intensity-weighted mean particle diameter of 145nm, a volume mean of 240nm. Optimal conditions for production of stable whey protein gels were attained when ohmic heating treatment at a MEF of 3V∙cm-1 was combined with a cold gelation step using 33mmol∙L-1 of Fe2+. The consistency index of hydrogels correlated negatively to MEF intensity, but a shear thickening behavior was observed when MEF intensity was increased up to 10V∙cm-1. According to transmission electron microscopy, ohmic heating gave rise to a more homogenous and compact fine-stranded whey protein-iron microstructure. Ohmic heating appears to be a promising technique, suitable to tailor properties of whey protein gels and with potential for development of innovative functional foods.


Asunto(s)
Electricidad , Compuestos Ferrosos/análisis , Manipulación de Alimentos/métodos , Alimentos Fortificados/análisis , Calefacción , Proteína de Suero de Leche/análisis , Conductividad Eléctrica , Hidrogeles , Microscopía Electrónica de Transmisión , Nanopartículas , Valor Nutritivo , Conformación Proteica , Viscosidad
19.
Crit Rev Food Sci Nutr ; 57(7): 1377-1393, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-26065435

RESUMEN

Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.


Asunto(s)
Suplementos Dietéticos/análisis , Nanoestructuras/química , Proteína de Suero de Leche/química , Fenómenos Químicos , Inocuidad de los Alimentos , Geles/química , Concentración de Iones de Hidrógeno , Nanotubos/química , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Temperatura
20.
Int J Biol Macromol ; 73: 31-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450047

RESUMEN

Hymenaea courbaril var courbaril seed xyloglucan was efficiently extracted with 0.1M NaCl, followed by ethanol precipitation (yield=72±5% w/w). Its amorphous structure was identified by the pattern of X-ray diffraction. The monosaccharide composition was determined by GC/MS analysis of the alditol acetates and showed the occurrence of glucose:xylose:galactose:arabinose (40:34:20:6). One-(1D) and two-dimensional-(2D) NMR spectra confirmed a central backbone composed by 4-linked ß-glucose units partially branched at position 6 with non-reducing terminal units of α-xylose or ß-galactose-(1→2)-α-xylose disaccharides. The xyloglucan solution was evaluated by dynamic light scattering and presents a polydisperse and practically neutral profile, and at 0.5 and 1.0% (w/v) the solutions behave as a viscoelastic fluid. The polysaccharide did not show significant antibacterial or hemolytic activities. Overall our results indicate that xyloglucan from H. courbaril is a promising polysaccharide for food and pharmaceutical industries.


Asunto(s)
Glucanos/química , Hymenaea/química , Extractos Vegetales/química , Semillas/química , Xilanos/química , Antibacterianos/química , Antibacterianos/farmacología , Cromatografía en Gel , Glucanos/farmacología , Hemolíticos/química , Hemolíticos/farmacología , Metilación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/farmacología , Reología , Difracción de Rayos X , Xilanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA