Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(20): 6285-6305, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37419672

RESUMEN

Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.


Asunto(s)
Solanum melongena , Solanum , Solanum melongena/genética , Fitomejoramiento , Solanum/genética , Fenotipo
2.
BMC Genomics ; 17: 321, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142449

RESUMEN

BACKGROUND: Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. RESULTS: Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. CONCLUSIONS: This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Solanum lycopersicum/genética , Solanum/clasificación , Evolución Molecular , Flores/genética , Ontología de Genes , Variación Genética , Anotación de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética , Solanum/genética , Solanum tuberosum/genética
3.
Int J Mol Sci ; 17(3): 394, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26999114

RESUMEN

The pepino (Solanum muricatum) is an edible and juicy fruit native to the Andean region which is becoming increasingly important. However, little information is available on its phenolic composition and bioactive properties. Four pepino varieties (37-A, El Camino, Puzol, and Valencia) and one accession (E-7) of its close wild relative S. caripense were characterized by HPLC-DAD-MS(n)/ESI. Twenty-four hydroxycinnamic acid derivatives were detected (5 to 16 compounds per variety or accession), with differences of more than two-fold for their total content among the materials studied. The major phenolics in the pepino varieties were chlorogenic acids and derivatives, while in S. caripense a caffeoyl-synapoyl-quinic acid was the major compound. The in vitro antioxidant capacity (DPPH (2,2-diphenyl-1-picrylhydrazyl hydrate), ORAC (oxygen radical absorbance capacity), and TRC (total reducing capacity) tests) was higher in S. caripense. Pepino and S. caripense extracts were not toxic for RAW 264.7 macrophage cells, and the raw extracts inhibited NO production of the lipopolysaccharide (LPS)-stimulated macrophages by 36% (El Camino) to 67% (37-A). No single variety ranked high simultaneously for hydroxycinnamic acids content, antioxidant activity and biological activity. We suggest the screening of large collections of germplasm or the use of complementary crosses between Puzol (high for hydroxycinnamic acids and biological activity) and S. caripense E-7 (high for antioxidant activity) to select and breed pepino varieties with enhanced properties.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Ácidos Cumáricos/análisis , Frutas/química , Solanum/química , Animales , Antioxidantes/análisis , Ácido Clorogénico/análisis , Ratones , Células RAW 264.7
4.
Food Chem ; 203: 49-58, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26948588

RESUMEN

Pepino (Solanum muricatum) fruits from 15 accessions of cultivated pepino as well as six accessions from wild relatives were evaluated for contents in dry matter, protein, ß-carotene, chlorophylls and seven minerals. Several-fold differences among accessions were found for most traits. Average values obtained were similar to those of melon and cucumber, but the phenolic contents were much higher. Wild species had significantly higher average contents for all traits vs. the cultivated pepino accessions. And, the comparisons among the cultivated pepino varieties showed that the modern varieties were more uniform in composition, and they possessed significantly lower concentrations of protein, P, K, and Zn than local land races. Most of the significant correlations among composition traits were positive. Our studies show that regular consumption of pepino fruits could make a significant contribution to the recommended daily intake of P, K, Fe and Cu as well as to the average daily intake of phenolics. Furthermore, the higher values for most nutrients measured in the wild species and in the local land races indicate that new pepino varieties with improved fruit contents in nutrient and bioactive compounds can be developed.


Asunto(s)
Frutas/química , Minerales/análisis , Fenoles/análisis , Proteínas de Plantas/análisis , Solanum/química , beta Caroteno/análisis , Adulto , Biodiversidad , Clorofila/análisis , Femenino , Frutas/crecimiento & desarrollo , Humanos , Masculino , Valor Nutritivo , Extractos Vegetales/química , Análisis de Componente Principal , Ingesta Diaria Recomendada , Solanum/clasificación , Solanum/crecimiento & desarrollo
5.
BMC Plant Biol ; 14: 350, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25491265

RESUMEN

BACKGROUND: Eggplant is a powerful source of polyphenols which seems to play a key role in the prevention of several human diseases, such as cancer and diabetes. Chlorogenic acid is the polyphenol most present in eggplant, comprising between the 70% and 90% of the total polyphenol content. Introduction of the high chlorogenic acid content of wild relatives, such as S. incanum, into eggplant varieties will be of great interest. A potential side effect of the increased level polyphenols could be a decrease on apparent quality due to browning caused by the polyphenol oxidase enzymes mediated oxidation of polyphenols. We report the development of a new interspecific S. melongena × S. incanum linkage map based on a first backcross generation (BC1) towards the cultivated S. melongena as a tool for introgressing S. incanum alleles involved in the biosynthesis of chlorogenic acid in the genetic background of S. melongena. RESULTS: The interspecific genetic linkage map of eggplant developed in this work anchor the most informative previously published genetic maps of eggplant using common markers. The 91 BC1 plants of the mapping population were genotyped with 42 COSII, 99 SSRs, 88 AFLPs, 9 CAPS, 4 SNPs and one morphological polymorphic markers. Segregation marker data resulted in a map encompassing 1085 cM distributed in 12 linkage groups. Based on the syntheny with tomato, the candidate genes involved in the core chlorogenic acid synthesis pathway in eggplant (PAL, C4H, 4CL, HCT, C3'H, HQT) as well as five polyphenol oxidase (PPO1, PPO2, PPO3, PPO4, PPO5) were mapped. Except for 4CL and HCT chlorogenic acid genes were not linked. On the contrary, all PPO genes clustered together. Candidate genes important in domestication such as fruit shape (OVATE, SISUN1) and prickliness were also located. CONCLUSIONS: The achievements in location of candidate genes will allow the search of favorable alleles employing marker-assisted selection in order to develop new varieties with higher chlorogenic content alongside a lower polyphenol oxidase activity. This will result into an enhanced product showing a lower fruit flesh browning with improved human health properties.


Asunto(s)
Catecol Oxidasa/genética , Ácido Clorogénico/metabolismo , Ligamiento Genético , Proteínas de Plantas/genética , Solanum/enzimología , Solanum/genética , Catecol Oxidasa/metabolismo , Mapeo Cromosómico , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum melongena/genética , Sintenía
6.
Int J Mol Sci ; 15(10): 17221-41, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25264739

RESUMEN

Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.


Asunto(s)
Ácido Clorogénico/análisis , Depuradores de Radicales Libres/análisis , Solanum/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Depuradores de Radicales Libres/farmacología , Frutas/química , Frutas/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solanum/metabolismo
7.
Plant Physiol ; 142(2): 629-41, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16920873

RESUMEN

Loss of pollen-S function in Prunus self-compatible mutants has recently been associated with deletions or insertions in S-haplotype-specific F-box (SFB) genes. We have studied two self-compatible cultivars of apricot (Prunus armeniaca), Currot (S(C)S(C)) and Canino (S(2)S(C)), sharing the naturally occurring self-compatible (S(C))-haplotype. Sequence analysis showed that whereas the S(C)-RNase is unaltered, a 358-bp insertion is found in the SFB(C) gene, resulting in the expression of a truncated protein. The alteration of this gene is associated with self-incompatibility (SI) breakdown, supporting previous evidence that points to SFB being the pollen-S gene of the Prunus SI S-locus. On the other hand, PCR analysis of progenies derived from Canino showed that pollen grains carrying the S(2)-haplotype were also able to overcome the incompatibility barrier. However, alterations in the SFB(2) gene or evidence of pollen-S duplications were not detected. A new class of F-box genes encoding a previously uncharacterized protein with high sequence similarity (approximately 62%) to Prunus SFB proteins was identified in this work, but the available data rules them out of producing S-heteroallelic pollen and thus the cause of the pollen-part mutation. These results suggest that cv Canino has an additional mutation, not linked to the S-locus, which causes a loss of pollen-S activity when present in pollen. As a whole, these findings support the proposal that the S-locus products besides other S-locus independent factors are required for gametophytic SI in Prunus.


Asunto(s)
Mutación/genética , Proteínas de Plantas/metabolismo , Polen/metabolismo , Prunus/genética , Prunus/metabolismo , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Genes de Plantas , Haplotipos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA