Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2021: 1552127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630845

RESUMEN

NLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown. Here, stroke was modeled in mice by middle cerebral artery occlusion (MCAO) for 60 minutes and treated with curcumin (150 mg/kg) intraperitoneally immediately after reperfusion, followed by daily administrations for 7 days. Curcumin ameliorated white matter (WM) lesions and brain tissue loss 21 days poststroke and improved sensorimotor function 3, 10, and 21 days after stroke. Furthermore, curcumin significantly reduced the number of gasdermin D+ (GSDMD+) Iba1+ and caspase-1+Iba1+ microglia/macrophage 21 days after stroke. In vitro, lipopolysaccharide (LPS) with ATP treatment was used to induce pyroptosis in primary microglia. Western blot revealed a decrease in pyroptosis-related proteins, e.g., GSDMD-N, cleaved caspase-1, NLRP3, IL-1ß, and IL-18, following in vitro or in vivo curcumin treatment. Mechanistically, both in vivo and in vitro studies confirmed that curcumin inhibited the activation of the NF-κB pathway. NLRP3 knocked down by siRNA transfection markedly increased the inhibitory effects of curcumin on microglial pyroptosis and proinflammatory responses, both in vitro and in vivo. Furthermore, stereotaxic microinjection of AAV-based NLRP3 shRNA significantly improved sensorimotor function and reduced WM lesion following curcumin treatment in MCAO mice. Our study suggested that curcumin reduced stroke-induced WM damage, improved functional outcomes, and attenuated microglial pyroptosis, at least partially, through suppression of the NF-κB/NLRP3 signaling pathway, further supporting curcumin as a potential therapeutic drug for stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Curcuma/química , Curcumina/administración & dosificación , Inflamasomas/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/lesiones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis/genética , Transducción de Señal/genética , Transfección , Resultado del Tratamiento
2.
Brain Res ; 1770: 147626, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418356

RESUMEN

Microglial polarization mediated neuroinflammation plays an important role in the pathological process of stroke. The aim of this study is to determine whether baicalein indirectly ameliorates neuronal injury through modulating microglial polarization after stroke and if so, then by what mechanism. The effects of baicalein on microglial polarization were revealed through the middle cerebral artery occlusion mouse model (MCAO, n = 6), the lipopolysaccharide (LPS) + interferon-γ (IFN-γ) and oxygen-glucose deprivation (OGD) induced neuroinflammatory microglia model (BV2, n = 3), respectively. Mice were treated with baicalein (100 mg/kg, i.g.) after reperfusion, and followed by daily administrations for 3 days. Results showed that the infarct volumes at 3 d in vehicle and baicalein-treated MCAO mice were 91.18 ± 4.02% and 55.36 ± 4.10%. Baicalein improved sensorimotor functions (p < 0.01) after MCAO. Real-time PCR revealed that baicalein decreased proinflammatory markers expression (p < 0.05), while elevated the anti-inflammatory markers (p < 0.05) in vivo and in vitro. Both western blot and immunofluorescent staining further confirmed that baicalein reduced proinflammatory marker CD16 levels (p < 0.01) and enhanced anti-inflammatory marker CD206 or Arg-1 levels (p < 0.05). Notably, baicalein suppressed the release of proinflammatory cytokines (p < 0.05) and nitric oxide (NO, p < 0.001). Mechanistically, baicalein prevented increases in TLR4 protein levels (p < 0.001), the phosphorylation of IKBα and p65 (p < 0.01), and the nuclear translocation of NF-κB p65 (p < 0.05). The NF-κB inhibitor, BAY 11-7085, enhanced the inhibitory effect of baicalein on the proinflammatory microglial polarization. Baicalein also inhibited the phosphorylation of signal transducer and activator of transcription 1 (STAT1, p < 0.001). A microglia-neuron co-culture system revealed that baicalein driven neuroprotection against OGD induced neuronal damage through modulating microglial polarization (p < 0.05). Baicalein indirectly ameliorates neuronal injury after stroke by polarizing microglia toward the anti-inflammatory phenotype via inhibition of the TLR4/NF-κB pathway and down-regulation of phosphorylated STAT1, suggesting that baicalein might serve a potential therapy for stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Flavanonas/uso terapéutico , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Polaridad Celular/efectos de los fármacos , Flavanonas/farmacología , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
3.
World J Gastroenterol ; 27(10): 939-958, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33776365

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in human populations worldwide. Huanglian decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer. AIM: To investigate the role and mechanism of Huanglian decoction on HCC cells. METHODS: To identify differentially expressed genes (DEGs), we downloaded gene expression profile data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma and Gene Expression Omnibus (GSE45436) databases. We obtained phytochemicals of the four herbs of Huanglian decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. We also established a regulatory network of DEGs and drug target genes and subsequently analyzed key genes using bioinformatics approaches. Furthermore, we conducted in vitro experiments to explore the effect of Huanglian decoction and to verify the predictions. In particular, the CCNB1 gene was knocked down to verify the primary target of this decoction. Through the identification of the expression levels of key proteins, we determined the primary mechanism of Huanglian decoction in HCC. RESULTS: Based on the results of the network pharmacological analysis, we revealed 5 bioactive compounds in Huanglian decoction that act on HCC. In addition, a protein-protein interaction network analysis of the target genes of these five compounds as well as expression and prognosis analyses were performed in tumors. CCNB1 was confirmed to be the primary gene that may be highly expressed in tumors and was significantly associated with a worse prognosis. We also noted that CCNB1 may serve as an independent prognostic indicator in HCC. Moreover, in vitro experiments demonstrated that Huanglian decoction significantly inhibited the growth, migration, and invasiveness of HCC cells and induced cell apoptosis and G2/M phase arrest. Further analysis showed that the decoction may inhibit the growth of HCC cells by downregulating the CCNB1 expression level. After Huanglian decoction treatment, the expression levels of Bax, caspase 3, caspase 9, p21 and p53 in HCC cells were increased, while the expression of CDK1 and CCNB1 was significantly decreased. The p53 signaling pathway was also found to play an important role in this process. CONCLUSION: Huanglian decoction has a significant inhibitory effect on HCC cells. CCNB1 is a potential therapeutic target in HCC. Further analysis showed that Huanglian decoction can inhibit HCC cell growth by downregulating the expression of CCNB1 to activate the p53 signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Ciclina B1 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA