Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 15390, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100614

RESUMEN

Reaumuria soongorica is an important biological barrier for ecological protection in the Gobi Desert in northwestern China, where soil nitrogen availability is low. N deposition has recently increased significantly in Gobi Desert, and the responses of R. soongorica to N enrichment may become a problem for ecological restoration and protection. However, little is known about the effects of N addition on the biomass, non-structural carbohydrates (NSC), and carbon:nitrogen:phosphorus (C:N:P) stoichiometry of R. soongorica in this region. Here, we examined changes in biomass, NSC and C:N:P ratios of different organs of R. soongorica seedlings in four N addition treatments: 0 (N0), 4.6 (N1), 9.2 (N2), and 13.8 (N3) g m-2 year-1. N addition up to 9.2 g m-2 year-1 significantly increased the biomass of different organs, simultaneously increasing the belowground: aboveground ratio of R. soongorica seedlings. Root NSC concentrations significantly increased under all N addition treatments, but leaf and stem NSC concentrations only increased under the N1 and N2 addition treatments. Nitrogen addition enhanced the soluble sugar concentrations (SSC) of leaves and roots, and reduced starch concentrations (SC) of all organs. Stem and root N concentrations significantly increased under the N2 and N3 treatments, and leaf N concentrations only increased under the N3 treatment, but N addition had no significant effect on plant C and P concentrations. Leaf and stem C:N ratios decreased significantly under the N2 and N3 treatments, but root C:N decreased significantly in all N addition treatments. The N3 treatment significantly increased the N:P ratio of all organs. N addition significantly enhanced available N (AN), available P (AP) and total phosphorus (TP) in rhizosphere soil. Our results suggest that N addition alters the biomass, NSC, N concentrations, C:N and N:P ratios of all plant organs, but roots responded more strongly than stems or leaves to N addition, potentially allowing the plants to absorb more water from the arid soil in this region ensuring the survival of R. soongorica seedlings. Rhizosphere soil AP, AN and TP concentrations were important factors affecting the NSC concentrations and stoichiometric characteristics of R. soongorica.


Asunto(s)
Plantones , Tamaricaceae , Carbohidratos , Hexosas , Nitrógeno , Fósforo , Suelo
2.
Front Physiol ; 13: 831226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464096

RESUMEN

To help prevent foodborne enteritis in aquaculture, several feed additives, such as herbal medicine, have been added to fish diets. Predictions of effective herb medicines for treating fish foodborne enteritis from key regulated DEGs (differentially expressed genes) in transcriptomic data can aid in the development of feed additives using the Traditional Chinese Medicine Integrated Database. Seabuckthorn has been assessed as a promising candidate for treating grass carp soybean-induced enteritis (SBMIE). In the present study, the SBMIE zebrafish model was used to assess seabuckthorn's therapeutic or preventative effects. The results showed that intestinal and hepatic inflammation was reduced when seabuckthorn was added, either pathologically (improved intestinal villi morphology, less oil-drops) or growth-related (body fat deposition). Moreover, seabuckthorn may block the intestinal p53 signaling pathway, while activating the PPAR signaling pathway and fatty acid metabolism in the liver. 16S rRNA gene sequencing results also indicated a significant increase in OTU numbers and skewed overlapping with the fish meal group following the addition of seabuckthorn. Additionally, there were signs of altered gut microbiota taxa composition, particularly for reduced TM7, Sphingomonas, and Shigella, following the addition of seabuckthorn. Hindgut imaging of fluorescent immune cells in SBMIE larvae revealed the immune regulatory mechanisms at the cellular level. Seabuckthorn may significantly inhibit the inflammatory gathering of neutrophils, macrophages, and mature T cells, as well as cellular protrusions' formation. On the other hand, in larvae, seabuckthorn inhibited the inflammatory aggregation of lck+ T cells but not immature lymphocytes, indicating that it affected intestinal adaptive immunity. Although seabuckthorn did not affect the distribution of intestinal CD4+ cells, the number of hepatic CD4+ cells were reduced in fish from the seabuckthorn supplementation group. Thus, the current data indicate that seabuckthorn may alleviate foodborne gut-liver symptoms by enhancing intestinal mucosal immunity and microbiota while simultaneously inhibiting hepatic adipose disposition, making it a potential additive for preventing fish foodborne gut-liver symptoms.

3.
Fitoterapia ; 147: 104736, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33010370

RESUMEN

Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.


Asunto(s)
Agonistas de los Canales de Cloruro/farmacología , Canales de Cloruro/metabolismo , Sesquiterpenos/farmacología , Animales , Anoctamina-1/antagonistas & inhibidores , Línea Celular , Células Epiteliales/efectos de los fármacos , Furanos , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Neoplasias/antagonistas & inhibidores , Ratas , Sesquiterpenos de Germacrano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA