Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 161: 111835, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192967

RESUMEN

This work aimed at evaluating the influence of types of whey proteins (lactoferrin, whey protein isolate and/or whey protein hydrolysates) and lipid composition (high oleic sunflower oil, coconut oil and/or medium chain triacylglycerols) on the behavior of model infant formulas (IFs) under simulated conditions of the infant gastrointestinal tract using an in vitro static digestion model. The physicochemical conditions of the gastric medium resulted in the aggregation of oil the droplets and partial hydrolysis of the proteins, considering whey proteins were resistant to the gastric conditions. However, after intestinal digestion the proteins from all the IFs were extensively hydrolyzed. The lipid composition of the IFs did not influence the protein hydrolysis, but the protein composition of the IFs altered the release of free fatty acids. The presence of lactoferrin in the IFs resulted in a higher free fatty acids release compared to IFs of same lipid composition. In terms of lipid composition, IFs containing coconut oil and medium chain triacylglycerols showed extremely higher free fatty acids release than those containing only long chain triacylglycerols. These results are promising for the design of infant foods containing fast-absorbing functional ingredients.


Asunto(s)
Ácidos Grasos no Esterificados , Fórmulas Infantiles , Aceite de Coco , Digestión , Ácidos Grasos no Esterificados/metabolismo , Humanos , Lactante , Fórmulas Infantiles/química , Lactoferrina/metabolismo , Hidrolisados de Proteína/metabolismo , Aceite de Girasol , Triglicéridos/metabolismo , Proteína de Suero de Leche/química
2.
Food Res Int ; 150(Pt A): 110777, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865792

RESUMEN

Cinnamon and paprika oleoresins (CPO) are by-products of the spice Cinnamomum zeylanicum Blume and the fruit Capsicum annuum L., respectively. They present a hydrophobic nature and various active compounds that can act synergistically. However, they are both susceptible to degradation by light, oxygen, and temperature. This work aimed at identifying the synergistic effect of these oleoresin mixtures, incorporating them into emulsions and characterizing the obtained systems. The CPO concentration was 10%, and whey protein isolate (WPI), gum Arabic (GA), or maltodextrin (MD) were used as wall materials in different proportions, totalizing 30% solids. The synergistic effect was observed in the FRAP assay at a 1:1 CPO ratio, with its expected value being significantly higher than the values for individual oleoresins (p < 0.05). Emulsions containing GA were unstable, while the emulsions containing MD and WPI showed reduced droplet size and viscosity, remaining stable for 7 days. The sample with a 1:3 proportion of MD:WPI as wall material showed higher FRAP and ORAC antioxidant values (24.74 ± 0.83 and 28.77 ± 1.23 mmol TE/g of oleoresin, respectively) and 4.18 mg total carotenoids/g sample. These results suggest the emulsions have a protective effect on active compounds content and can be used as efficient delivery systems for food product applications.


Asunto(s)
Capsicum , Cinnamomum zeylanicum , Antioxidantes , Emulsiones , Extractos Vegetales , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA