Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Therm Biol ; 115: 103625, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37429086

RESUMEN

PURPOSE: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. METHODS: Three commonly used temperature models from literature were analysed: "constant baseline", "constant thermal stress" and "temperature dependent". Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 °C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. RESULTS: We found an average predicted T50 of 41.0 ± 1.3 °C (constant baseline model), 39.9 ± 1.1 °C (constant thermal stress model) and 41.7 ± 1.1 °C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 ± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 ± 83.0 W). CONCLUSION: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 °C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.


Asunto(s)
Hipertermia Inducida , Humanos , Hipertermia Inducida/métodos , Temperatura , Cuello , Hipertermia/etiología , Cabeza
2.
Int J Hyperthermia ; 37(1): 1103-1115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32981391

RESUMEN

INTRODUCTION: Within the hyperthermia community, consensus exists that clinical outcome of the treatment radiotherapy and/or chemotherapy plus hyperthermia (i.e. elevating tumor temperature to 40 - 44 °C) is related to the applied thermal dose; hence, treatment quality is crucial for the success of prospective multi-institution clinical trials. Currently, applicator quality assurance (QA) measurements are implemented independently at each institution using basic cylindrical phantoms. A multi-institution comparison of heating quality using magnetic resonance thermometry (MRT) and anatomical representative anthropomorphic phantoms provides a unique opportunity to obtain novel QA insights to facilitate multi-institution trial evaluation. OBJECTIVE: Perform a systematic QA procedure to compare the performance of MR-compatible hyperthermia systems in five institutions. METHODS AND MATERIALS: Anthropomorphic phantoms, including pelvic and spinal bones, were produced. Clinically relevant power of 600 watts was applied for ∼12 min to allow for 8 sequential MR-scans. The 3D-heating distribution, steering capabilities, and presence of off-target heating were analyzed. RESULTS: The evaluated devices show comparable heating profiles for centric and eccentric targets. The differences observed in the 3D-heating profiles are the result of variations in the exact phantom positioning and applicator characteristics, whereby positioning of the phantom followed current ESHO-QA guidelines. CONCLUSION: Anthropomorphic phantoms were used to perform QA-measurements of MR-guided hyperthermia systems operating in MR-scanners of different brands. Comparable heating profiles are shown for the five evaluated institutions. Subcentimeter differences in position substantially affected the results when evaluating the heating patterns. Integration of advanced phantoms and precise positioning in QA-guidelines should be evaluated to guarantee the best quality patient care.


Asunto(s)
Calefacción , Hipertermia Inducida , Humanos , Hipertermia , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Prospectivos
3.
Int J Hyperthermia ; 34(6): 704-713, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28931333

RESUMEN

PURPOSE: In this study, we investigated the differences in hyperthermia treatment (HT) quality between treatments applied with different hyperthermia systems for sub-superficial tumours in the head and neck (H&N) region. MATERIALS AND METHODS: In 24 patients, with a clinical target volume (CTV) extending up to 6 cm from the surface, we retrospectively analysed the predicted HT quality achievable by two planar applicator arrays or one phased-array hyperthermia system. Hereto, we calculated and compared the specific absorption rate (SAR) and temperature distribution coverage of the CTV and gross tumour volume (GTV) for the Lucite cone applicator (LCA: planar), current sheet applicator (CSA: planar) and the HYPERcollar (phased-array). RESULTS: The HYPERcollar provides better SAR coverage than planar applicators if the target region is fully enclosed by its applicator frame. For targets extending outside the HYPERcollar frame, sufficient SAR coverage (25% target coverage, i.e. TC25 ≥ 75%) can still be achieved using the LCA when the target is fully under the LCA aperture and not deeper than 50 mm from the patient surface. CONCLUSION: Simulations predict that the HYPERcollar (hence also its successor the HYPERcollar3D) is to be preferred over planar applicators such as LCA and current sheet applicator in sub-superficial tumours in the H&N region when used within specifications.


Asunto(s)
Neoplasias de Cabeza y Cuello/terapia , Hipertermia Inducida/métodos , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad
4.
Int J Hyperthermia ; 34(4): 407-414, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28705099

RESUMEN

PURPOSE: Hyperthermia (40-44 °C) effectively sensitises tumours to radiotherapy by locally altering tumour biology. One of the effects of heat at the cellular level is inhibition of DNA repair by homologous recombination via degradation of the BRCA2-protein. This suggests that hyperthermia can expand the group of patients that benefit from PARP-inhibitors, a drug exploiting homologous recombination deficiency. Here, we explore whether the molecular mechanisms that cause heat-mediated degradation of BRCA2 are conserved in cell lines from various origins and, most importantly, whether, BRCA2 protein levels can be attenuated by heat in freshly biopted human tumours. EXPERIMENTAL DESIGN: Cells from four established cell lines and from freshly biopsied material of cervical (15), head- and neck (9) or bladder tumours (27) were heated to 42 °C for 60 min ex vivo. In vivo hyperthermia was studied by taking two biopsies of the same breast or cervical tumour: one before and one after treatment. BRCA2 protein levels were measured by immunoblotting. RESULTS: We found decreased BRCA2-levels after hyperthermia in all established cell lines and in 91% of all tumours treated ex vivo. For tumours treated with hyperthermia in vivo, technical issues and intra-tumour heterogeneity prevented obtaining interpretable results. CONCLUSIONS: This study demonstrates that heat-mediated degradation of BRCA2 occurs in tumour material directly derived from patients. Although BRCA2-degradation may not be a practical biomarker for heat deposition in situ, it does suggest that application of hyperthermia could be an effective method to expand the patient group that could benefit from PARP-inhibitors.


Asunto(s)
Proteína BRCA2/metabolismo , Hipertermia Inducida , Neoplasias/metabolismo , Neoplasias/terapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular Tumoral , Terapia Combinada , Femenino , Calor , Humanos , Proteolisis
5.
Radiat Oncol ; 11: 21, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26868027

RESUMEN

The benefit of hyperthermia as a potent modifier of radiotherapy has been well established and more recently also the combination with chemotherapy was shown beneficial. Also for head and neck cancer, the impact of hyperthermia has been clinically demonstrated by a number of clinical trials. Unfortunately, the technology applied in these studies provided only limited thermal dose control, and the devices used only allowed treatment of target regions close to the skin. Over the last decade, we developed the technology for deep and controlled hyperthermia that allows treatment of the entire head and neck region. Our strategy involves focused microwave heating combined with 3D patient-specific electromagnetic and thermal simulations for conformal, reproducible and adaptive hyperthermia application. Validation of our strategy has been performed by 3D thermal dose assessment based on invasively placed temperature sensors combined with the 3D patient specific simulations. In this paper, we review the phase III clinical evidence for hyperthermia in head and neck tumors, as well as the heating and dosimetry technology applied in these studies. Next, we describe the development, clinical implementation and validation of 3D guided deep hyperthermia with the HYPERcollar, and its second generation, i.e. the HYPERcollar3D. Lastly, we discuss early clinical results and provide an outlook for this technology.


Asunto(s)
Neoplasias de Cabeza y Cuello/terapia , Hipertermia Inducida/métodos , Radioterapia/métodos , Ensayos Clínicos como Asunto , Ensayos Clínicos Fase III como Asunto , Simulación por Computador , Radiación Electromagnética , Humanos , Imagenología Tridimensional/métodos , Microondas , Radiometría/métodos , Radioterapia Conformacional/métodos , Piel/efectos de la radiación , Temperatura , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA