Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
IBRO Neurosci Rep ; 14: 210-234, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880056

RESUMEN

Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.

2.
Saudi J Biol Sci ; 30(2): 103555, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36632072

RESUMEN

Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.

3.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36405420

RESUMEN

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

4.
Phytomed Plus ; 1(4): 100135, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35403085

RESUMEN

Background: SARS-CoV-2 infection or COVID-19 is a major global public health issue that requires urgent attention in terms of drug development. Transmembrane Protease Serine 2 (TMPRSS2) is a good drug target against SARS-CoV-2 because of the role it plays during the viral entry into the cell. Virtual screening of phytochemicals as potential inhibitors of TMPRSS2 can lead to the discovery of drug candidates for the treatment of COVID-19. Purpose: The study was designed to screen 132 phytochemicals from three medicinal plants traditionally used as antivirals; Zingiber officinalis Roscoe (Zingiberaceae), Artemisia annua L. (Asteraceae), and Moringa oleifera Lam. (Moringaceae), as potential inhibitors of TMPRSS2 for the purpose of finding therapeutic options to treat COVID-19. Methods: Homology model of TMPRSS2 was built using the ProMod3 3.1.1 program of the SWISS-MODEL. Binding affinities and interaction between compounds and TMPRSS2 model was examined using molecular docking and molecular dynamics simulation. The drug-likeness and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of potential inhibitors of TMPRSS2 were also assessed using admetSAR web tool. Results: Three compounds, namely, niazirin, quercetin, and moringyne from M. oleifera demonstrated better molecular interactions with binding affinities ranging from -7.1 to -8.0 kcal/mol compared to -7.0 kcal/mol obtained for camostat mesylate (a known TMPRSS2 inhibitor), which served as a control. All the three compounds exhibited good drug-like properties by not violating the Lipinski rule of 5. Niazirin and moringyne possessed good ADMET properties and were stable in their interactions with the TMPRSS2 based on the molecular dynamics simulation. However, the ADMET tool predicted the potential hepatotoxic and mutagenic effects of quercetin. Conclusion: This study demonstrated the potentials of niazirin, quercetin, and moringyne from M. oleifera, to inhibit the activities of human TMPRSS2, thus probably being good candidates for further development as new drugs for the treatment or management of COVID-19.

5.
J Tradit Complement Med ; 10(5): 434-439, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953558

RESUMEN

In recent times, many scientists have given great attention to nutraceuticals (complementary medicine) as it widely used for promoting health status. In particular for the prevention and treatment of various neurological diseases or disorders without or less adverse effects. The current mini-review was intended to compile all popular (major) nutraceuticals against various neurodegenerative diseases (NDDs) including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) with special reference to clinical trials. Preliminary reviews indicated that nutraceuticals like curcumin, resveratrol, Epigallocatechin-3-gallate (EGCG), Coenzyme Q10, ω-3 FA (DHA/EPA/ALA), showed better neuroprotective activity against various NDDs in human setting (clinical trial). Hence this contribution will focus only on those popular nutraceuticals with proposed brief mechanisms (antioxidant, anti-inflammatory, mitochondrial homeostasis, autophagy regulation, promote neurogenesis) and its recommendation. This mini-review would aid common people to choose better nutraceuticals to combat various NDDs along with standard neuroprotective agents and modified lifestyle pattern.

6.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32792840

RESUMEN

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

7.
Comput Struct Biotechnol J ; 17: 579-590, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073393

RESUMEN

Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Šroot mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.

8.
Nutr Res Rev ; 32(1): 70-78, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30284526

RESUMEN

It has been nearly 70 years since the discovery that strict adherence to a diet low in phenylalanine prevents severe neurological sequelae in patients with phenylalanine hydroxylase deficiency (phenylketonuria; PKU). Today, dietary treatment with restricted phenylalanine intake supplemented with non-phenylalanine amino acids to support growth and maintain a healthy body composition remains the mainstay of therapy. However, a better understanding is needed of the factors that influence N balance in the context of amino acid supplementation. The aim of the present paper is to summarise considerations for improving N balance in patients with PKU, with a focus on gaining greater understanding of amino acid absorption, disposition and utilisation. In addition, the impact of phenylalanine-free amino acids on 24 h blood phenylalanine/tyrosine circadian rhythm is evaluated. We compare the effects of administering intact protein v. free amino acid on protein metabolism and discuss the possibility of improving outcomes by administering amino acid mixtures so that their absorption profile mimics that of intact protein. Protein substitutes with the ability to delay absorption of phenylalanine and tyrosine, mimicking physiological absorption kinetics, are expected to improve the rate of assimilation into protein and minimise fluctuations in quantitative plasma amino acid levels. They may also help maintain normal glycaemia and satiety sensation. This is likely to play an important role in improving the management of patients with PKU.


Asunto(s)
Aminoácidos/metabolismo , Suplementos Dietéticos , Nitrógeno/metabolismo , Fenilalanina/metabolismo , Fenilcetonurias/metabolismo , Aminoácidos/farmacología , Ritmo Circadiano , Dieta , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/uso terapéutico , Humanos , Absorción Intestinal/efectos de los fármacos , Fenilcetonurias/dietoterapia , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA