Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2321255121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564632

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFA) found primarily in fish oil have been a popular supplement for cardiovascular health because they can substantially reduce circulating triglyceride levels in the bloodstream to prevent atherosclerosis. Beyond this established extracellular activity, here, we report a mode of action of PUFA, regulating intracellular triglyceride metabolism and lipid droplet (LD) dynamics. Real-time imaging of the subtle and highly dynamic changes of intracellular lipid metabolism was enabled by a fluorescence lifetime probe that addressed the limitations of intensity-based fluorescence quantifications. Surprisingly, we found that among omega-3 PUFA, only docosahexaenoic acid (DHA) promoted the lipolysis in LDs and reduced the overall fat content by approximately 50%, and consequently helped suppress macrophage differentiation into foam cells, one of the early steps responsible for atherosclerosis. Eicosapentaenoic acid, another omega-3 FA in fish oil, however, counteracted the beneficial effects of DHA on lipolysis promotion and cell foaming prevention. These in vitro findings warrant future validation in vivo.


Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Humanos , Lipólisis , Fluorescencia , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/farmacología , Ácidos Docosahexaenoicos/metabolismo , Macrófagos/metabolismo , Triglicéridos
2.
Phytomedicine ; 123: 155227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128398

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a progressive chronic disease. Currently, cardiovascular diseases (CVDs) caused by AS is responsible for the global increased mortality. Yanshanjiang as miao herb in Guizhou of China is the dried and ripe fruit of Fructus Alpinia zerumbet. Accumulated evidences have confirmed that Yanshanjiang could ameliorate CVDs, including AS. Nevertheless, its effect and mechanism on AS are still largely unknown. PURPOSE: To investigate the role of essential oil from Fructus Alpinia zerumbet (EOFAZ) on AS, and the potential mechanism. METHODS: A high-fat diet (HFD) ApoE-/- mice model of AS and a oxLDL-induced model of macrophage-derived foam cells (MFCs) were reproduced to investigate the pharmacological properties of EOFAZ on AS in vivo and foam cell formation in vitro, respectively. The underlying mechanisms of EOFAZ were investigated using Network pharmacology and molecular docking. EOFAZ effect on PPARγ protein stability was measured using a cellular thermal shift assay (CETSA). Pharmacological agonists and inhibitors and gene interventions were employed for clarifying EOFAZ's potential mechanism. RESULTS: EOFAZ attenuated AS progression in HFD ApoE-/- mice. This attenuation was manifested by the reduced aortic intima plaque development, increased collagen content in aortic plaques, notable improvement in lipid profiles, and decreased levels of inflammatory factors. Moreover, EOFAZ inhibited the formation of MFCs by enhancing cholesterol efflux through activiting the PPARγ-LXRα-ABCA1/G1 pathway. Interestingly, the pharmacological knockdown of PPARγ impaired the beneficial effects of EOFAZ on MFCs. Additionally, our results indicated that EOFAZ reduced the ubiquitination degradation of PPARγ, and the chemical composition of EOFAZ directly bound to the PPARγ protein, thereby increasing its stability. Finally, PPARγ knockdown mitigated the protective effects of EOFAZ on AS in HFD ApoE-/- mice. CONCLUSION: These findings represent the first confirmation of EOFAZ's in vivo anti-atherosclerotic effects in ApoE-/- mice. Mechanistically, its chemical constituents can directly bind to PPARγ protein, enhancing its stability, while reducing PPARγ ubiquitination degradation, thereby inhibiting foam cell formation via activation of the PPARγ-LXRα-ABCA1/G1 pathway. Simultaneously, EOFAZ could ameliorates blood lipid metabolism and inflammatory microenvironment, thus synergistically exerting its anti-atherosclerotic effects.


Asunto(s)
Alpinia , Aterosclerosis , Aceites Volátiles , Placa Aterosclerótica , Animales , Ratones , PPAR gamma/metabolismo , Aceites Volátiles/farmacología , Frutas , Simulación del Acoplamiento Molecular , Transducción de Señal , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Apolipoproteínas E , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/metabolismo
3.
Am J Chin Med ; 51(8): 2175-2193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930331

RESUMEN

Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.


Asunto(s)
Aterosclerosis , Inflamasomas , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL , Células Espumosas/metabolismo , Receptores Depuradores , Inflamación/metabolismo , Colesterol/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/metabolismo , ARN Mensajero/metabolismo , Interleucina-1/metabolismo
4.
Food Sci Nutr ; 11(6): 3141-3153, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324843

RESUMEN

The accumulation of foam cells in arterial intima and the accompanied chronic inflammation are considered major causes of neoatherosclerosis and restenosis. However, both the underlying mechanism and effective treatment for the disease are yet to be uncovered. In this study, we combined transcriptome profiling of restenosis artery tissue and bioinformatic analysis to reveal that NLRP3 inflammasome is markedly upregulated in restenosis and that several restenosis-related DEGs are also targets of mulberry extract, a natural dietary supplement used in traditional Chinese medicine. We demonstrated that mulberry extract suppresses the formation of ox-LDL-induced foam cells, possibly by upregulating the cholesterol efflux genes ABCA1 and ABCG1 to inhibit intracellular lipid accumulation. In addition, mulberry extract dampens NLRP3 inflammasome activation by stressing the MAPK signaling pathway. These findings unveil the therapeutic value of mulberry extract in neoatherosclerosis and restenosis treatment by regulating lipid metabolism and inflammatory response of foam cells.

5.
Front Immunol ; 14: 1054014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911738

RESUMEN

DNA methylation, including aberrant hypomethylation and hypermethylation, plays a significant role in atherosclerosis (AS); therefore, targeting the unbalanced methylation in AS is a potential treatment strategy. Gualou-xiebai herb pair (GXHP), a classic herb combination, have been used for the treatment of atherosclerotic-associated diseases in traditional Chinese medicine. However, the effects and underlying mechanism of GXHP on AS remain nebulous. In this study, the CCK-8 method was applied to determine the non-toxic treatment concentrations for GXHP. The formation of foam cells played a critical role in AS, so the foam cells model was established after RAW264.7 cells were treated with ox-LDL. The contents of total cholesterol (TC) and free cholesterol (FC) were determined by Gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was used to check the expressions of inflammatory factors including IL-1ß, TNF-α, and VCAM-1. Methyl-capture sequencing (MC-seq) and RNA-seq were applied to observe the changes in genome-wide DNA methylation and gene expression, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze differentially methylated genes (DMGs) and differentially expressed genes (DEGs). The targeted signaling pathway was selected and verified using western blotting (WB). The results showed that the lipids and inflammatory factors in foam cells significantly increased. GXHP significantly reduced the expression of TC, FC, and inflammatory factors. MC-seq and RNA-seq showed that GXHP not only corrected the aberrant DNA hypermethylation, but also DNA hypomethylation, thus restored the aberrant DEGs in foam cells induced by ox-LDL. GXHP treatment may target the PI3K-Akt signaling pathway. GXHP reduced the protein levels of phosphorylated(p)-PI3K and p-AKT in foam cells. Our data suggest that treatment with GXHP showed protective effects against AS through the inhibition of DNA methylation mediated PI3K-AKT signaling pathway, suggesting GXHP as a novel methylation-based agent.


Asunto(s)
Aterosclerosis , Metilación de ADN , Humanos , Células Espumosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , RNA-Seq , Aterosclerosis/metabolismo , Transducción de Señal/genética , Colesterol/metabolismo
6.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903257

RESUMEN

Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.


Asunto(s)
Brassica napus , Brassica rapa , Aceite de Brassica napus/metabolismo , Proteómica , Macrófagos/metabolismo , Células Espumosas/metabolismo , Brassica napus/metabolismo , Brassica rapa/química , Antiinflamatorios/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
7.
J Ethnopharmacol ; 283: 114678, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34563614

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiopogonis Radix, the commonly used traditional Chinese medicine in clinic for treating cardiovascular diseases, is returned to the stomach, lung and heart meridian. It is reported to nourish yin, moisten lung and is used to treat heart yin deficiency syndromes and asthenia of heart and lung, which indicated that Ophiopogonis Radix may have a protective effect on heart disorders. Atherosclerosisis is an important process in the development of cardiovascular diseases and abnormal lipid deposition induced macrophage foam cells is its crucial foundation. Our previous study showed the extract of Ophiopogonis Radix (EOR) ameliorates atherosclerosis in vitro. However, it may protect against cardiovascular diseases through inhibiting macrophage foam cell formation and its potential effective components and mechanisms are still unclear. AIM OF THE STUDY: Our study aimed to investigate the effect of Ophiopogonis Radix on macrophage foam cell formation and its potential active constituents and mechanisms. MATERIALS AND METHODS: Ox-LDL induced macrophage cells were employed to evaluate the effect of Ophiopogonis Radix on macrophage foam cell formation. Then the potential active constituents inhibited formation of macrophage foam cells were screened by biospecific cell extraction and its underlying mechanisms were also explored by Western blot. RESULTS: The extract of Ophiopogonis Radix was found to significantly inhibit macrophage foam cell formation, evidenced by the decrease of TG and TC and Oil Red O staining analysis in macrophage cells, which indicated that EOR reduced the formation of macrophage foam cells. At the same time, EOR was showed to increase antioxidant capacity in macrophage cells. After treatment with EOR, two potential active components interacted with macrophage foam cells specifically were identified to inhibit macrophage foam cell formation including methylophiopogonanone A and methylophiopogonanone B. Methylophiopogonanone A was then proved to decrease the expression of CD36, Lox-1 and SREBP2, increase the expression of ABCA1 obviously, while the expression of ABCG1 and SREBP1 had no changes. CONCLUSIONS: In our study, Ophiopogonis Radix was found to protect against atherosclerosis through suppressing ox-LDL induced macrophage foam cell formation and two potential compounds were identified by biospecific cell extraction including methylophiopogonanone A and methylophiopogonanone B. Moreover, methylophiopogonanone A was proved to inhibit foam cells through reducing uptake, synthesis and increasing efflux, which may provide guidance and reference for application of Ophiopogonis Radix and investigation of the effective components of TCMs.


Asunto(s)
Asparagaceae/química , Supervivencia Celular/efectos de los fármacos , Células Espumosas/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Fitoterapia , Raíces de Plantas/química , Animales , Masculino , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/química , Extractos Vegetales/farmacología
8.
Free Radic Biol Med ; 176: 345-355, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34648905

RESUMEN

Lipid metabolism dysregulation is associated with cardiovascular disease (CVD) risk. Specific oxidized lipids are recognized CVD biomarkers involved in all stages of atherosclerosis, including foam cell formation. Moderate coffee intake is positively associated with cardiovascular health. A randomized, controlled (n = 25) clinical trial was conducted in healthy subjects to assess the changes in lipid species relevant to CVD (main inclusion criteria: coffee drinkers, nonsmokers, with no history and/or diagnosis of chronic disease and not consuming any medications). Volunteers consumed a coffee beverage (400 mL/day) containing either 787 mg (coffee A; n = 24) or 407 mg (coffee B; n = 25) of chlorogenic acids for eight weeks. We measured the total plasma levels of 46 lipids, including fatty acids, sterols, and oxysterols, at baseline and after eight weeks and assessed the effects of chlorogenic and phenolic acids, the major coffee antioxidants, in an in vitro foam cell model via targeted lipidomics. At baseline (n = 74), all participants presented oxysterols and free fatty acids (FFAs) (CVD risk markers), which are closely correlated to among them, but not with the classical clinical variables (lipid profile, waist circumference, and BMI). After eight weeks, the control group lipidome showed an increase in oxysterols (+7 ± 10%) and was strongly correlated with FFAs (e.g., arachidonic acid) and cholesteryl ester reduction (-13 ± 7%). Notably, the coffee group subjects (n = 49) had increased cholesteryl esters (+9 ± 11%), while oxysterols (-71 ± 30%) and FFAs (-29 ± 26%) decreased. No differences were found between the consumption of coffees A and B. Additionally, coffee antioxidants decreased oxysterols and regulated arachidonic acid in foam cells. Our results suggest that coffee consumption modulates the generation of oxidized and inflammatory lipids in healthy subjects, which are fundamental during CVD development. The clinical trial was registered on the International Clinical Trials Registry Platform, WHO primary registry (RPCEC00000168).


Asunto(s)
Café , Lipidómica , Ácido Clorogénico , Células Espumosas , Voluntarios Sanos , Humanos
9.
Indian J Pharmacol ; 53(4): 286-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414906

RESUMEN

OBJECTIVE: High-density lipoprotein (HDL) cholesterol-mediated atherosclerotic plaque regression has gained wide therapeutic attention. The whole plant methanolic extract of the medicinal plant Desmodium gyrans Methanolic Extract (DGM) has shown to mitigate hyperlipidemia in high fat- and-cholesterol fed rats and rabbits with significant HDL enhancing property. The study aimed to assess the functionality and mechanistic basis of HDL promoting effect of DGM. MATERIALS AND METHODS: Macrophage cholesterol efflux and foam cell formation assays were performed in THP-1 macrophages. Male Wistar rats were given DGM extract over 1 month and assessed the serum HDL, Apolipoprotein A1 (Apo-A1), and paraoxonase activity. Quantitative Polymerase chain reaction was carried out to assess the expression level of Apo-A1, SR-B1 (Scavenger receptor B1), and Cholesteryl ester transfer protein (CETP) on cDNA of HepG2 cells exposed to DGM. RESULTS: Pretreatment of DGM inhibited uptake of oxidized lipids and enhanced the lipid efflux by THP-1-derived macrophages. Oral administration of DGM (100 and 250 mg/kg) progressively enhanced the serum HDL, Apo-A1 level, and associated paraoxonase activity in normal male Wistar rats. In support to this, DGM exposed HepG2 cells documented dose-dependent increase in the expression of SR-B1 and Apo-A1 mRNA, while reduced the CETP expression. CONCLUSION: Overall the results indicated that DGM modulates lipid trafficking and possesses functional HDL enhancing potential through increased Apo-A1 levels and paraoxonase activity. Further, reduced CETP expression and increased expression of SR-B1 suggest the reverse cholesterol transport promoting role of DGM.


Asunto(s)
Fabaceae , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas HDL/fisiología , Macrófagos/metabolismo , Extractos Vegetales/farmacología , Animales , Apolipoproteína A-I/genética , Antígenos CD36/genética , Proteínas de Transferencia de Ésteres de Colesterol/genética , Células Espumosas/fisiología , Células Hep G2 , Humanos , Masculino , Ratas , Ratas Wistar , Células THP-1
10.
J Cell Mol Med ; 25(11): 5238-5249, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33951300

RESUMEN

Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)-/- mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Aterosclerosis/terapia , Colesterol/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Macrófagos/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE
11.
Biochem Biophys Res Commun ; 556: 65-71, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839416

RESUMEN

Ethyl gallate (EG) is a well-known constituent of medicinal plants, but its effects on atherosclerosis development are not clear. In the present study, the anti-atherosclerosis effects of EG and the underlying mechanisms were explored using macrophage cultures, zebrafish and apolipoprotein (apo) E deficient mice. Treatment of macrophages with EG (20 µM) enhanced cellular cholesterol efflux to HDL, and reduced net lipid accumulation in response to oxidized LDL. Secretion of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) from activated macrophages was also blunted by EG. Fluorescence imaging techniques revealed EG feeding of zebrafish reduced vascular lipid accumulation and inflammatory responses in vivo. Similar results were obtained in apoE-/- mice 6.5 months of age, where plaque lesions and monocyte infiltration into the artery wall were reduced by 70% and 42%, respectively, after just 6 weeks of injections with EG (20 mg/kg). HDL-cholesterol increased 2-fold, serum cholesterol efflux capacity increased by ∼30%, and the levels of MCP-1 and IL-6 were reduced with EG treatment of mice. These results suggest EG impedes early atherosclerosis development by reducing the lipid and macrophage-content of plaque. Underlying mechanisms appeared to involve HDL cholesterol efflux mechanisms and suppression of pro-inflammatory cytokine secretion.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Benzoatos/metabolismo , Ácido Gálico/análogos & derivados , Metabolismo de los Lípidos/efectos de los fármacos , Plantas Medicinales/metabolismo , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Aterosclerosis/prevención & control , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Espumosas/citología , Células Espumosas/efectos de los fármacos , Células Espumosas/inmunología , Células Espumosas/metabolismo , Ácido Gálico/administración & dosificación , Ácido Gálico/metabolismo , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Células RAW 264.7 , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/metabolismo
12.
Assay Drug Dev Technol ; 19(1): 38-45, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232611

RESUMEN

Macrophages would engulf circulating oxidized (ox)- low-density lipoprotein and form lipid droplet-laden foam cells. Macrophage foam cells are considered an important therapeutic target of atherosclerosis. The aim of the study was to investigate a hypoxic foam cell model for anti-atherosclerotic drug screening using the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). The oil red O stating results showed that treatment with CoCl2 could induce lipid accumulation and lead to cell transformation to spindle-shaped and lipid-rich foam cells in RAW 264.7 macrophages. Incubation with 150 µM CoCl2 for 24 h significantly increased the area of intracellular lipid droplets in macrophages, compared with the control group. Our findings indicate that CoCl2-triggered macrophage foam cells should be a potential in vitro hypoxia model for atherosclerosis drug discovery.


Asunto(s)
Antiinflamatorios/farmacología , Aterosclerosis/tratamiento farmacológico , Hipoxia de la Célula/efectos de los fármacos , Cobalto/farmacología , Macrófagos/efectos de los fármacos , Modelos Biológicos , Animales , Aterosclerosis/patología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Células RAW 264.7
13.
J Lipid Res ; 61(11): 1491-1503, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32963037

RESUMEN

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma ß-carotene with atherosclerosis, and we recently showed that ß-carotene oxygenase 1 (BCO1) activity, responsible for ß-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact ß-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr-/- mice, ß-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr-/- /Bco1-/- mice despite accumulating ß-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.


Asunto(s)
Aterosclerosis/metabolismo , Lípidos/química , Hígado/química , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animales , Aterosclerosis/patología , Células Cultivadas , Femenino , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/deficiencia , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
15.
Free Radic Biol Med ; 160: 604-617, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32745768

RESUMEN

Oxylipins are considered biomarkers related to cardiovascular diseases (CVDs). They are generated in vivo via the oxygenation of polyunsaturated fatty acids as a result of oxidative stress and inflammation. Oxylipins are involved in vascular functions and are produced during foam cell formation in atherogenesis. Additionally, the consumption coffee is associated with the regulation on a particular oxylipin group, the F2t-isoprostanes (F2t-IsoPs). This function has been attributed to the chlorogenic acids (CGAs) from the coffee beverage. Considering the anti-inflammatory and antioxidant properties of CGAs, we evaluated the effects of two types of coffee that provided 787 mg CGAs/day (Coffee A) and 407 mg CGAs/day (Coffee B) by reducing 35 selected oxylipins in healthy subjects. Furthermore, we assessed the effect of CGAs on the cellular proatherogenic response in foam cells by using an oxidized LDL (oxLDL)-macrophage interaction model. After eight weeks of coffee consumption, the contents of 12 urine oxylipins were reduced. However, the effect of Coffee A showed a stronger decrease in IsoPs, dihomo-IsoPs, prostaglandins (PGs) and PG metabolites, probably due to its higher content of CGAs. Neither of the two coffees reduced the levels of oxLDL. Moreover, the in vitro oxylipin induction by oxLDL on foam cells was ameliorated by phenolic acids and CGAs, including the inhibition of IsoPs and PGs by caffeoylquinic and dicaffeoylquinic acids, respectively, while the phenolic acids maintained both antioxidant and anti-inflammatory activities. These findings suggest that coffee antioxidants are strong regulators of oxylipins related to CVDs. The clinical trial was registered on the International Clinical Trials Registry Platform, WHO primary registry (RPCEC00000168).


Asunto(s)
Aterosclerosis , Café , Adulto , Ácido Clorogénico/farmacología , Células Espumosas , Humanos , Macrófagos , Oxilipinas
16.
Nutr Metab Cardiovasc Dis ; 30(9): 1590-1599, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605883

RESUMEN

BACKGROUND AND AIMS: Hypercholesterolemia and oxidative stress are two of the most important risk factors for atherosclerosis. The aim of the present work was to evaluate mandarin (Citrus reticulata) peel oil (MPO) in cholesterol metabolism and lipid synthesis, and its antioxidant capacity. METHODS AND RESULTS: Incubation of hepatic HepG2 cells with MPO (15-60 µL/L) reduced cholesterogenesis and saponifiable lipid synthesis, demonstrated by [14C]acetate radioactivity assays. These effects were associated with a decrease in a post-squalene reaction of the mevalonate pathway. Molecular docking analyses were carried out using three different scoring functions to examine the cholesterol-lowering property of all the components of MPO against lanosterol synthase. Docking simulations proposed that minor components of MPO monoterpenes, like alpha-farnesene and neryl acetate, as well the major component, limonene and its metabolites, could be partly responsible for the inhibitory effects observed in culture assays. MPO also decreased RAW 264.7 foam cell lipid storage and its CD36 expression, and prevented low-density lipoprotein (LDL) lipid peroxidation. CONCLUSION: These results may imply a potential role of MPO in preventing atherosclerosis by a mechanism involving inhibition of lipid synthesis and storage and the decrease of LDL lipid peroxidation.


Asunto(s)
Antioxidantes/farmacología , Aterosclerosis/prevención & control , Colesterol/metabolismo , Citrus , Dislipidemias/tratamiento farmacológico , Células Espumosas/efectos de los fármacos , Frutas , Hepatocitos/efectos de los fármacos , Hipolipemiantes/farmacología , Lipoproteínas LDL/metabolismo , Aceites de Plantas/farmacología , Animales , Antioxidantes/aislamiento & purificación , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Antígenos CD36/metabolismo , Citrus/química , Dislipidemias/complicaciones , Dislipidemias/metabolismo , Células Espumosas/metabolismo , Frutas/química , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hipolipemiantes/aislamiento & purificación , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Aceites de Plantas/aislamiento & purificación , Células RAW 264.7
17.
Theranostics ; 10(3): 1090-1106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938053

RESUMEN

Background and Purpose: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis. Formononetin, an isoflavone extracted from Astragalus membranaceus, has exhibited multiple inhibitory effects on proatherogenic factors, such as obesity, dyslipidemia, and inflammation in different animal models. However, its effect on atherosclerosis remains unknown. In this study, we determined if formononetin can inhibit atherosclerosis and elucidated the underlying molecular mechanisms. Methods: ApoE deficient mice were treated with formononetin contained in high-fat diet for 16 weeks. After treatment, mouse aorta, macrophage and serum samples were collected to determine lesions, immune cell profile, lipid profile and expression of related molecules. Concurrently, we investigated the effect of formononetin on monocyte adhesion, foam cell formation, endothelial activation, and macrophage polarization in vitro and in vivo. Results: Formononetin reduced en face and aortic root sinus lesions size. Formononetin enhanced lesion stability by changing the composition of plaque. VSMC- and macrophage-derived foam cell formation and its accumulation in arterial wall were attenuated by formononetin, which might be attributed to decreased SRA expression and reduced monocyte adhesion. Formononetin inhibited atherogenic monocyte adhesion and inflammation. KLF4 negatively regulated the expression of SRA at transcriptional and translational level. Conclusions: Our study demonstrate that formononetin can substantially attenuate the development of atherosclerosis via regulation of interplay between KLF4 and SRA, which suggests the formononetin might be a novel therapeutic approach for inhibition of atherosclerosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Células Espumosas/efectos de los fármacos , Isoflavonas/uso terapéutico , Factores de Transcripción de Tipo Kruppel/metabolismo , Receptores Depuradores de Clase A/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Espumosas/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Miocitos del Músculo Liso
18.
Lipids Health Dis ; 18(1): 195, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31706299

RESUMEN

BACKGROUND: Increased macrophage and foam cell apoptosis during early atherogenesis retards plaque progression by impeding foam cell formation, suppressing inflammation and limiting lesion cellularity. Our previous in vitro study in THP1 macrophages demonstrated that Terminalia Arjuna (TA) attenuates dual-specificity phosphatase1 (DUSP1), a key negative regulator of JNK/P38MAPK signaling cascade, the branch also implicated in the UPR (unfolded protein response)-CHOP-mediated apoptotic pathway; however this pathway has not been explored so far in the presence of TA. Therefore, we aimed to elucidate the pro-apoptotic effect of aqueous bark extract of TA (aqTAE) on macrophage and foam cells and the underlying mechanism associated with it. METHODS: THP1 cells were initially differentiated into macrophages with phorbol-12-myristate-13-acetate (PMA) (100 ng/ml) for 24 h, followed by ox-LDL (100 µg/ml) treatment for another 24 h to induce foam cell formation. Thereafter, macrophages and ox-LDL- treated cells were incubated with aqTAE (100 µg/ml) for the next 24 h. Further, Oil Red O (ORO) staining, CD36 expression profiling, apoptotic assay and transcriptional and translational expression of ER-stress markers i.e., X-box binding protein 1 (XBP1) and C/EBP homologous protein (CHOP) were performed for elucidating the potential mechanism underlying TA-induced macrophage and foam cell apoptosis. RESULTS: We demonstrated that ox-LDL treatment significantly increased lipid accumulation and upregulated CD36 expression, indicating foam cell formation; while the addition of aqTAE resulted in a significant decline in ORO positive cells, and suppression of CD36 expression in ox-LDL-stimulated macrophages, suggestive of reduced formation of lipid-laden foam cells. Further, aqTAE treatment alone and in combination with oxidized low-density lipoprotein (ox-LDL) stimulus, significantly attenuated CD36 expression; increased apoptosis; and augmented the expression of UPR regulatory proteins including XBP1 and CHOP, and similar observations were noted when cells were treated with ox-LDL alone. These findings indicate that TA promotes macrophage and foam cell apoptosis via enhancing UPR-mediated activation of JNK/p38MAPK-CHOP pathway in a DUSP1-dependent manner, implying a possible interplay between ox-LDL-induced ER stress- and TA-mediated MAPK signaling. CONCLUSION: Our data shows that aqTAE inhibits foam cell formation, as well as promotes macrophage and foam cell apoptosis by augmenting UPR- JNK/p38MAPK-CHOP signaling cascade via inhibiting DUSP1. These findings provide novel mechanistic insight into the anti-atherogenic potential of TA, which may prove beneficial against early-stage atherosclerotic lesions.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Espumosas/efectos de los fármacos , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Corteza de la Planta/química , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Terminalia/química , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Humanos , Macrófagos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Am J Chin Med ; 46(1): 87-106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29298513

RESUMEN

oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent atherosclerosis.


Asunto(s)
Andrographis/química , Colesterol/metabolismo , Diterpenos/farmacología , Células Espumosas/metabolismo , Lipoproteínas LDL/efectos adversos , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Antiinflamatorios , Antineoplásicos Fitogénicos , Antioxidantes , Aterosclerosis/etiología , Transporte Biológico/genética , Antígenos CD36/genética , Antígenos CD36/metabolismo , Línea Celular , Expresión Génica/efectos de los fármacos , Receptores X del Hígado/fisiología , Ratones , ARN Mensajero/metabolismo , Receptores Depuradores/fisiología
20.
J Nutr Biochem ; 45: 24-38, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28431321

RESUMEN

Atherosclerosis-related research has focused mainly on the effects of lipids on macrophage foam cell formation and atherogenesis, whereas the role of amino acids (AAs) was understudied. The current study aimed to identify anti- or pro-atherogenic AA in the macrophage model system and to elucidate the underlying metabolic and molecular mechanisms. J774A.1 cultured macrophages were treated with increasing concentrations of each 1 of the 20 AAs. Macrophage atherogenicity was assessed in terms of cellular toxicity, generation of reactive oxygen species (ROS) and cellular cholesterol or triglyceride content. At nontoxic concentrations (up to 1 mM), modest effects on ROS generation or cholesterol content were noted, but six specific AAs significantly affected macrophage triglyceride content. Glycine, cysteine, alanine and leucine significantly decreased macrophage triglyceride content (by 24%-38%), through attenuated uptake of triglyceride-rich very low-density lipoprotein (VLDL) by macrophages. In contrast, glutamate and glutamine caused a marked triglyceride accumulation in macrophages (by 107% and 129%, respectively), via a diacylglycerol acyltransferase-1 (DGAT1)-dependent increase in triglyceride biosynthesis rate with a concurrent maturation of the sterol regulatory element-binding protein-1 (SREBP1). Supplementation of apolipoprotein E-deficient (apoE-/-) mice with glycine for 40 days significantly decreased the triglyceride levels in serum and in peritoneal macrophages (MPMs) isolated from the mice (by 19%). In contrast, glutamine supplementation significantly increased MPM ROS generation and the accumulation of cholesterol and that of triglycerides (by 48%), via enhanced uptake of LDL and VLDL. Altogether, the present findings reveal some novel roles for specific AA in macrophage atherogenicity, mainly through modulation of cellular triglyceride metabolism.


Asunto(s)
Aminoácidos/metabolismo , Aterosclerosis/metabolismo , Macrófagos/patología , Triglicéridos/metabolismo , Aminoácidos/sangre , Aminoácidos/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Antígenos CD36/metabolismo , Colesterol/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lipoproteínas VLDL/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Noqueados para ApoE , Receptores de LDL/metabolismo , Receptores Depuradores de Clase B/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA