Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Food Microbiol ; 416: 110664, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38492524

RESUMEN

Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.


Asunto(s)
Virus de la Hepatitis A , Norovirus , Ostreidae , Virus , Animales , Humanos , Virus de la Hepatitis A/genética , Norovirus/genética , Frutas/química , Lactuca , ARN Viral/análisis , Contaminación de Alimentos/análisis
2.
Int J Food Microbiol ; 416: 110665, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38457887

RESUMEN

Romaine lettuce in the U.S. is primarily grown in California or Arizona and either processed near the growing regions (source processing) or transported long distance for processing in facilities serving distant markets (forward processing). Recurring outbreaks of Escherichia coli O157:H7 implicating romaine lettuce in recent years, which sometimes exhibited patterns of case clustering in Northeast and Midwest, have raised industry concerns over the potential impact of forward processing on romaine lettuce food safety and quality. In this study, freshly harvested romaine lettuce from a commercial field destined for both forward and source processing channels was tracked from farm to processing facility in two separate trials. Whole-head romaine lettuce and packaged fresh-cut products were collected from both forward and source facilities for microbiological and product quality analyses. High-throughput amplicon sequencing targeting16S rRNA gene was performed to describe shifts in lettuce microbiota. Total aerobic bacteria and coliform counts on whole-head lettuce and on fresh-cut lettuce at different storage times were significantly (p < 0.05) higher for those from the forward processing facility than those from the source processing facility. Microbiota on whole-head lettuce and on fresh-cut lettuce showed differential shifting after lettuce being subjected to source or forward processing, and after product storage. Consistent with the length of pre-processing delays between harvest and processing, the lettuce quality scores of source-processed romaine lettuce, especially at late stages of 2-week storage, was significantly higher than of forward-processed product (p < 0.05).


Asunto(s)
Escherichia coli O157 , Microbiota , Microbiología de Alimentos , Lactuca , Escherichia coli O157/genética , Inocuidad de los Alimentos , Recuento de Colonia Microbiana , Manipulación de Alimentos , Contaminación de Alimentos/análisis
3.
Microbiol Spectr ; 12(4): e0376723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363139

RESUMEN

The varied choice of bacterial strain, plant cultivar, and method used to inoculate, retrieve, and enumerate Escherichia coli O157:H7 from live plants could affect comparability among studies evaluating lettuce-enterobacterial interactions. Cultivar, bacterial strain, incubation time, leaf side inoculated, and sample processing method were assessed for their influence in recovering and quantifying E. coli O157:H7 from live Romaine lettuce. Cultivar exerted the strongest effect on E. coli O157:H7 counts, which held up even when cultivar was considered in interactions with other factors. Recovery from the popularly grown green Romaine "Rio Bravo" was higher than from the red variety "Outredgeous." Other modulating variables were incubation time, strain, and leaf side inoculated. Sample processing method was not significant. Incubation for 24 hours post-lettuce inoculation yielded greater counts than 48 hours, but was affected by lettuce cultivar, bacterial strain, and leaf side inoculated. Higher counts obtained for strain EDL933 compared to a lettuce outbreak strain 2705C emphasized the importance of selecting relevant strains for the system being studied. Inoculating the abaxial side of leaves gave higher counts than adaxial surface inoculation, although this factor interacted with strain and incubation period. Our findings highlight the importance of studying interactions between appropriate bacterial strains and plant cultivars for more relevant research results, and of standardizing inoculation and incubation procedures. The strong effect of cultivar exerted on the E. coli O157:H7-lettuce association supports the need to start reporting cultivar information for illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.IMPORTANCEThe contamination of Romaine lettuce with Escherichia coli O157:H7 has been linked to multiple foodborne disease outbreaks, but variability in the methods used to evaluate E. coli O157:H7 association with live lettuce plants complicates the comparability of different studies. In this study, various experimental variables and sample processing methods for recovering and quantifying E. coli O157:H7 from live Romaine lettuce were assessed. Cultivar was found to exert the strongest influence on E. coli O157:H7 retrieval from lettuce. Other modulating factors were bacterial incubation time on plants, strain, and leaf side inoculated, while sample processing method had no impact. Our findings highlight the importance of selecting relevant cultivars and strains, and of standardizing inoculation and incubation procedures, in these types of assessments. Moreover, results support the need to start reporting cultivars implicated in foodborne illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.


Asunto(s)
Escherichia coli O157 , Microbiología de Alimentos , Lactuca , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis
4.
Heliyon ; 9(10): e20834, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916128

RESUMEN

Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques. The results showed that the coated bags had longer freshness than the uncoated ones. Furthermore, the characterization of cucumber, mushroom, and garlic placed into coated and uncoated PE bags was conducted by monitoring various parameters such as mass loss, total soluble solids, pH, and visual inspection. The study revealed that the PE bags coated with CS NPs showed a noticeable result in extending the shelf life of fresh produce. Finally, the antibacterial activity of PE bags was evaluated against various bacterial species. Hence, the PE bags coated with CS NPs could be a promising candidate for elongating the shelf life of packaged fresh produce.

5.
Microbiol Spectr ; 11(4): e0003423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428084

RESUMEN

The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.


Asunto(s)
Antiinfecciosos , Desinfectantes , Salmonella enterica , Microbiología de Alimentos , Frutas/microbiología , Recuento de Colonia Microbiana , Manipulación de Alimentos/métodos , Desinfectantes/farmacología
6.
Biology (Basel) ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36552281

RESUMEN

In recent years, the use of natural products such as essential oils (EOs) and other plant extracts for the preservation of fresh produce has attracted much interest from the food industry. Many endemic medicinal and aromatic plants, such as Cypriot oregano (Origanum dubium), present a plethora of properties that can be utilized by the fruit and vegetable sectors of the food industry. The purpose of the present study was to assess the effects of O. dubium EO and hydrosol (at different concentrations and durations of dipping application) for the preservation of tomato and cucumber fruit quality, and their effectiveness as sanitizing agents against two foodborne pathogens (Listeria monocytogenes and Salmonella enterica). The results of this study indicated that increased concentrations of EO, combined with a longer duration of application, resulted in less marketable fruit compared to hydrosol application. Interestingly, EO application at lower concentrations and shorter durations of application (i.e., 0.01% for 5 min) increased fruit antioxidant, ascorbic acid and carotenoid levels (for tomato fruit), suggesting an increase in the nutritional value of the treated fruit, compared to the control. EO and hydrosol were able to decrease the bacterial populations (both bacteria) on fruits. Both products were especially effective against L. monocytogenes, even seven days after their application and storage at 11 °C (up to an approx. 3 log reduction with the EO application). Overall, the results of this study suggest that the use of O. dubium EO and hydrosol could be considered as alternative sanitation means for tomatoes and cucumbers.

7.
J Appl Microbiol ; 132(3): 2389-2409, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34767685

RESUMEN

AIM: To investigate the microbiological quality, potential foodborne pathogen presence, and to phenotypically (antimicrobial resistance [AMR] profiles) and genotypically (DNA fingerprints and diarrhoeagenic genes) characterize Escherichia coli isolated throughout spinach production systems from farm-to-sale. METHODS AND RESULTS: Samples (n = 288) were collected from two commercial supply chains using either river or borehole irrigation water. E. coli was enumerated throughout the chain where river water was directly used for overhead irrigation at levels between 0.00 and 3.22 log colony forming unit (CFU) g-1 . Following enrichment, isolation and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identification, E. coli was isolated from 22.57% (n = 65/288) of all samples. Salmonella spp. were isolated from 3% (n = 9/288) of river and irrigation water samples on one farm, and no Listeria monocytogenes was detected throughout the study. Of the 80 characterized E. coli isolates, one harboured the stx2 virulence gene, while 43.75% (n = 35) were multidrug resistant. Overall, 26.30% of the multidrug-resistant E. coli isolates were from production scenario one that used river irrigation water, and 17.50% from the second production scenario that used borehole irrigation water. A greater percentage of resistance phenotypes were from water E. coli isolates (52.50%), than isolates from spinach (37.50%). E. coli isolates from spinach and irrigation water clustered together at high similarity values (>90%) using enterobacterial repetitive intergenic consensus-polymerase chan reaction analysis. CONCLUSIONS: This study reported the presence of multidrug-resistant environmental E. coli throughout spinach production from farm, during processing and up to retail. Furthermore, the similarity of multi-drug resistant E. coli isolates suggests transfer from irrigation water to spinach in both scenarios, reiterating that irrigation water for vegetables consumed raw, should comply with standardized microbiological safety guidelines. SIGNIFICANCE AND IMPACT OF STUDY: Multidrug-resistant E. coli presence throughout spinach production emphasizes the necessity of increased surveillance of AMR in fresh produce and the production environment within a One Health paradigm to develop AMR mitigation strategies.


Asunto(s)
Escherichia coli , Listeria monocytogenes , Escherichia coli/genética , Salmonella , Sudáfrica , Spinacia oleracea/microbiología
8.
Food Microbiol ; 102: 103926, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34809952

RESUMEN

A multiplex PCR method was developed for the simultaneous detection of murine norovirus (MNV-1) as a surrogate for human norovirus (HuNoV) GI and GII, Salmonella spp., Shigella spp., and Shiga toxin producing Escherichia coli (STEC) in fresh produce. The toxicity of the glycine buffer on bacterial pathogens viability was evaluated. The growth of each of the three pathogens (previously stressed) was evaluated at 35 and 41.5 °C in modified buffered peptone water (mBPW) and trypticase soy broth (TSB), supplemented with vancomycin, novobiocin and brilliant green at two concentration levels. The selected conditions for simultaneous enrichment were: 41.5 °C/mBPW/supplemented with 8 ppm vancomycin, 0.6 ppm novobiocin and 0.2 ppm brilliant green. The pathogens and aerobic plate count (APC) growth was evaluated in the enrichment of lettuce, coriander, strawberry and blackberry under the best enrichment conditions. Starting from 1 to 10 CFU/mL, Salmonella reached from 7.63 to 8.91, Shigella 6.81 to 7.76 and STEC 7.43 to 9.27 log CFU/mL. The population reached for the APC was 5.11-6.56 log CFU/mL. Simultaneous detection by PCR was done using designed primers targeting invA, ipaH, stx1 and stx2 genes, and MNV-1. The detection sensitivity was 10-100 PFU for the MNV-1 and 1-10 CFU for each pathogenic bacteria. This protocol takes 6 h for MNV-1 and 24 h for Salmonella spp., Shigella spp., and STEC detection from the same food portion. In total, 200 samples were analyzed from retail markets from Queretaro, Mexico. Two strawberry samples were positive for HuNoV GI and one lettuce sample was positive for STEC. In conclusion, the method developed in this study is capable of detecting HuNoV GI and GII, Salmonella spp., Shigella spp and STEC from the same fresh produce sample.


Asunto(s)
Coriandrum , Contaminación de Alimentos/análisis , Microbiología de Alimentos/métodos , Fragaria , Lactuca , Rubus , Coriandrum/microbiología , Coriandrum/virología , Fragaria/microbiología , Fragaria/virología , Frutas/microbiología , Frutas/virología , Lactuca/microbiología , Lactuca/virología , Reacción en Cadena de la Polimerasa Multiplex , Norovirus/aislamiento & purificación , Novobiocina , Rubus/microbiología , Rubus/virología , Salmonella/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Shigella/aislamiento & purificación , Vancomicina
9.
J Microbiol Methods ; 181: 106132, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33370554

RESUMEN

MacConkey broth purple provides a more efficient method for Most Probable Number estimation for Shigatoxigenic Escherichia coli (E.coli) than the process of bacterial enrichment in buffered peptone water followed by detection on MacConkey agar, since it is a single-step process that gives comparable results in plant extracts.


Asunto(s)
Medios de Cultivo , Infecciones por Escherichia coli/microbiología , Microbiología de Alimentos/métodos , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Microbiología del Agua , Animales , Humanos
10.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005729

RESUMEN

Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos/métodos , Viabilidad Microbiana , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella enterica/aislamiento & purificación , Azidas/química , Lactuca/microbiología , Solanum lycopersicum/microbiología , Propidio/análogos & derivados , Propidio/química , Spinacia oleracea/microbiología
11.
Food Microbiol ; 86: 103357, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703857

RESUMEN

We investigated combinations of gaseous essential oils (EO gases) for their synergistic inhibitory activities against Listeria monocytogenes on a laboratory medium and radish sprouts. The minimum inhibitory concentrations and minimum lethal concentrations of oregano, thyme thymol, and cinnamon bark EO gases against L. monocytogenes were 0.0781 µL/mL on nutrient agar supplemented with glucose and bromocresol purple (NGBA). A checkerboard assay showed that combinations of oregano and thyme thymol EO gases and of oregano and cinnamon bark EO gases exert the strongest synergistic antilisterial activity (fractional inhibitory concentration index [FICI] = 0.3750). A combination of thyme thymol and cinnamon bark EO gases also had a synergistic effect (FICI = 0.5000) on L. monocytogenes on NGBA. Combinations of oregano and thyme thymol EO gases were tested for synergistic antimicrobial activity against L. monocytogenes on radish sprouts. A combination of these gases, each at 0.313 µL/mL, caused a significant (P ≤ 0.05) reduction in the number of L. monocytogenes on radish sprouts compared with reductions caused by treatment with oregano or thyme thymol EO gas alone at the same concentration. Our findings provide information that will be useful when developing antimicrobial applications using EO gases to control L. monocytogenes in the food industry.


Asunto(s)
Antibacterianos/farmacología , Listeria monocytogenes/efectos de los fármacos , Aceites Volátiles/farmacología , Origanum/química , Raphanus/microbiología , Timol/farmacología , Thymus (Planta)/química , Antibacterianos/química , Cinnamomum zeylanicum/química , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Sinergismo Farmacológico , Gases/farmacología , Listeria monocytogenes/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Raphanus/crecimiento & desarrollo , Timol/química
12.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357436

RESUMEN

The plant phyllosphere is colonized by a complex ecosystem of microorganisms. Leaves of raw eaten vegetables and herbs are habitats for bacteria important not only to the host plant, but also to human health when ingested via meals. The aim of the current study was to determine the presence of putative probiotic bacteria in the phyllosphere of raw eaten produce. Quantification of bifidobacteria showed that leaves of Lepidium sativum L., Cichorium endivia L., and Thymus vulgaris L. harbor between 103 and 106 DNA copies per gram fresh weight. Total cultivable bacteria in the phyllosphere of those three plant species ranged from 105 to 108 CFU per gram fresh weight. Specific enrichment of probiotic lactic acid bacteria from C. endivia, T. vulgaris, Trigonella foenum-graecum L., Coriandrum sativum L., and Petroselinum crispum L. led to the isolation of 155 bacterial strains, which were identified as Pediococcus pentosaceus, Enterococcus faecium, and Bacillus species, based on their intact protein pattern. A comprehensive community analysis of the L. sativum leaves by PhyloChip hybridization revealed the presence of genera Bifidobacterium, Lactobacillus, and Streptococcus. Our results demonstrate that the phyllosphere of raw eaten produce has to be considered as a substantial source of probiotic bacteria and point to the development of vegetables and herbs with added probiotic value.


Asunto(s)
Bacterias , Microbiología de Alimentos , Plantas Comestibles/microbiología , Probióticos , Técnicas de Tipificación Bacteriana , Bifidobacterium , Biodiversidad , Microbiología Ambiental , Humanos , Lactobacillales , Microbiota , Filogenia , Plantas Medicinales , Verduras/microbiología
13.
J Food Sci ; 83(7): 1871-1879, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29905930

RESUMEN

There is a significant unmet need to develop antimicrobial solutions to reduce the risk of contamination in fresh produce. Bacteriophages have been proposed as a potential approach for controlling foodborne pathogens. This study evaluated the combination of edible dip coatings with T7 bacteriophages on whole and cut produce. The evaluation includes an assessment of phage loading, phage storage stability, antimicrobial activity, and phage stability during simulated gastric digestion on sliced cucumbers, sliced apples, and whole cherry tomatoes. In this evaluation, phages coated on fresh produce using edible whey protein isolate (WPI) were compared with phages coated from an aqueous suspension (control coating). The results demonstrated that WPI coatings load more phages than the control and enhanced phage stability during cold storage (4 °C) for cut apples and whole cherry tomatoes. Phage stability decreased by 1 to 3 log(PFU) in a simulated gastric environment. Phage antimicrobial activity against Escherichia coli BL21 decreased 2 to 4 log(CFU) of bacteria on cut apples and whole cherry tomatoes, while no significant bacterial reduction was observed for sliced cucumbers. Overall, the results show that WPI dip coating provides phage loading, stability, and antimicrobial activity to produce surfaces compared to the control coating, and thus may be considered an effective approach for extending phage therapy on fresh produce. PRACTICAL APPLICATION: The practical application is to prevent bacterial cross contamination of fresh produce by using a combination of edible coating with bacteriophages. The results demonstrate enhanced loading and stability of phages on fresh produce when used in combination with an edible coating.


Asunto(s)
Bacteriófagos/fisiología , Conservación de Alimentos/métodos , Frutas/virología , Verduras/virología , Proteína de Suero de Leche/química , Bacteriófagos/química , Cucumis sativus/virología , Conservación de Alimentos/instrumentación , Solanum lycopersicum/virología , Malus/virología
14.
Food Microbiol ; 69: 25-32, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941906

RESUMEN

Human norovirus (NoV) is a leading cause of fresh produce associated outbreaks. Previous research indicates that the roots of growing leafy greens and berries internalize human NoV. However the effect of plant type and inoculum level on internalization rates has not been directly compared. In this study we compared the internalization and dissemination rates of human NoV and its surrogate, Tulane virus (TV) in green onion, radishes, and Romaine lettuce. We also evaluated the effect inoculum level and plant growth matrix on the rate of viral internalization. In the hydroponic growth system, we detected internalization and dissemination of human NoV RNA in green onions. In hydroponically growing green onions inoculated with high titer TV, we found higher rates of internalization and dissemination compared to green onions inoculated with low titer TV. In soil growth systems, no infectious TV was detected in either green onion or radishes. However, in Romaine lettuce plants grown in soil approximately 4 log10 PFU/g was recovered from all tissues on day 14 p.i. Overall, we found that the type of plant, growth matrix, and the inoculum level influences the internalization and dissemination of human NoV and TV.


Asunto(s)
Caliciviridae/fisiología , Contaminación de Alimentos/análisis , Lactuca/virología , Norovirus/fisiología , Cebollas/virología , Raphanus/virología , Verduras/virología , Internalización del Virus , Caliciviridae/genética , Caliciviridae/aislamiento & purificación , Humanos , Lactuca/crecimiento & desarrollo , Norovirus/genética , Norovirus/aislamiento & purificación , Cebollas/crecimiento & desarrollo , Raphanus/crecimiento & desarrollo , Microbiología del Suelo , Verduras/crecimiento & desarrollo
15.
Crit Rev Food Sci Nutr ; 58(2): 318-333, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27196114

RESUMEN

Microbial load on fresh fruit and vegetables causes decay and losses after harvest and may lead to foodborne illness in case of contamination with human pathogens on raw consumed produces. Washing with tap water only marginally reduces microorganisms attached to produce surfaces. Chlorine is widely used for decontamination on fresh horticultural produces. However, due to harmful by-products and the questionable efficacy it has become increasingly challenged. During the last 20 years, the interest to study ClO2 treatments as an alternative sanitation agent for industrially prepared fresh produce has largely increased. For a wide range of commodities, the application of gaseous ClO2 has meanwhile been investigated. In addition, since several years, the interest in aqueous ClO2 treatments has further risen because of the better manageability in postharvest processing lines compared to gaseous application. This article critically evaluated the effects of postharvest application of aqueous ClO2, either alone or in combination with other treatments, on microbial loads for various horticultural produces. In laboratory investigations, application of aqueous ClO2 at concentrations between 3 and 100 ppm effectively reduced counts of natural or inoculated microorganisms (bacteria, yeasts, and mold) in the range of 1 and 5 log. However, various effects of ClO2 treatments on produce quality have been described. These mainly comprise implication on sensory and visual attributes. In this context, there is increasing focus on the potential impacts of aqueous ClO2 on relevant nutritional components of produces such as organic acids or phenolic substances.


Asunto(s)
Compuestos de Cloro/toxicidad , Productos Agrícolas/efectos de los fármacos , Desinfectantes/toxicidad , Conservantes de Alimentos/toxicidad , Calidad de los Alimentos , Frutas/efectos de los fármacos , Óxidos/toxicidad , Verduras/efectos de los fármacos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Carga Bacteriana/efectos de los fármacos , Compuestos de Cloro/química , Compuestos de Cloro/farmacología , Productos Agrícolas/microbiología , Desinfectantes/química , Desinfectantes/farmacología , Contaminación de Alimentos/prevención & control , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Frutas/microbiología , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/aislamiento & purificación , Humanos , Óxidos/química , Óxidos/farmacología , Solubilidad , Verduras/microbiología , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo , Levaduras/aislamiento & purificación
16.
J Appl Microbiol ; 123(6): 1597-1606, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28948664

RESUMEN

AIMS: To determine the fate of Escherichia coli on vegetables that were processed through commercial wash treatments and stored under simulated retail conditions at 4°C or wholesale at fluctuating ambient temperatures (0-25°C, dependent on season). METHODS AND RESULTS: Bovine slurry that was naturally contaminated with E. coli O145 was applied without dilution or diluted 1:10 using borehole water to growing potatoes, leeks or carrots. Manure was applied 1 week prior to harvest to simulate a near-harvest contamination event by manure deposition or an application of contaminated water to simulate a flooding event or irrigation from a contaminated water source. At harvest, crops were contaminated at up to 2 log cfu g-1 . Washing transferred E. coli into the water of a flotation tank used for potato washing and did not completely remove all traces of contamination from the crop. Manure-contaminated potatoes were observed to contain 0·72 cfu E. coli O145 g-1 after processing and retail storage. Manure-contaminated leeks harboured 0·73-1·55 cfu E. coli O145 g-1 after washing and storage. There was no cross-contamination when leeks were spray washed. Washing in an abrasive drum resulted in less than perfect decontamination for manure-contaminated carrots. There were five post-distribution isolations from carrots irrigated with contaminated water 24 h prior to harvest. CONCLUSIONS: Standard commercial washing and distribution conditions may be insufficient to reliably control human pathogenic E. coli on fresh produce. SIGNIFICANCE AND IMPACT: Previous speculation that the cause of a UK foodborne disease outbreak was soil from imperfectly cleaned vegetables is plausible.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Microbiología de Alimentos , Estiércol/microbiología , Microbiología del Suelo , Verduras/microbiología , Animales , Bovinos , Recuento de Colonia Microbiana , Productos Agrícolas/microbiología , Daucus carota/microbiología , Brotes de Enfermedades , Contaminación de Alimentos/análisis , Industria de Alimentos/métodos , Humanos , Hojas de la Planta/microbiología , Solanum tuberosum/microbiología
17.
J Food Sci ; 82(5): 1132-1141, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28425569

RESUMEN

Nanoencapsulation can provide a means to effectively deliver antimicrobial compounds and enhance the safety of fresh produce. However, to date there are no studies which directly compares how different nanoencapsulation systems affect fresh produce safety and quality. This study compared the effects on quality and safety of fresh-cut lettuce treated with free and nanoencapsulated natural antimicrobial, cinnamon bark extract (CBE). A challenge study compared antimicrobial efficacy of 3 different nanoencapsulated CBE systems. The most effective antimicrobial treatment against Listeria monocytogenes was chitosan-co-poly-N-isopropylacrylamide (chitosan-PNIPAAM) encapsulated CBE, with a reduction on bacterial load up to 2 log10 CFU/g (P < 0.05) compared to the other encapsulation systems when fresh-cut lettuce was stored at 5 °C and 10 °C for 15 d. Subsequently, chitosan-PNIPAAM-CBE nanoparticles (20, 40, and 80 mg/mL) were compared to a control and free CBE (400, 800, and 1600 µg/mL) for its effects on fresh-cut lettuce quality over 15 d at 5 °C. By the 10th day, the most effective antimicrobial concentration was 80 mg/mL for chitosan-PNIPAAM-CBE, up to 2 log10 CFU/g reduction (P < 0.05), compared with the other treatments. There was no significant difference between control and treated samples up to day 10 for the quality attributes evaluated. Chitosan-PNIPAAM-CBE nanoparticles effectively inhibited spoilage microorganisms' growth and extended fresh-cut lettuce shelf-life. Overall, nanoencapsulation provided a method to effectively deliver essential oil and enhanced produce safety, while creating little to no detrimental quality changes on the fresh-cut lettuce.


Asunto(s)
Resinas Acrílicas , Antiinfecciosos/administración & dosificación , Quitosano , Microbiología de Alimentos , Lactuca/microbiología , Nanocápsulas/química , Aceites Volátiles/administración & dosificación , Antiinfecciosos/farmacología , Recuento de Colonia Microbiana , Inocuidad de los Alimentos , Humanos , Listeria monocytogenes/crecimiento & desarrollo , Aceites Volátiles/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Seguridad , Verduras/microbiología
18.
J Food Sci ; 82(4): 922-932, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28272803

RESUMEN

An antimicrobial capsule releasing thyme oil was developed using modified halloysite nanotubes (HNTs). In order to increase the pore volume, HNTs were treated with 5.0 mol/L NaOH solution, which resulted in the encapsulation of more thyme oil molecules inside the HNTs. The morphology of the raw HNTs and NaOH-treated HNTs (N-HNTs) was characterized using transmission electron microscopy and nitrogen adsorption-desorption analysis. The loading capacity increased from 180.7 ± 12.7 to 256.4 ± 16.7 mg thyme oil/g HNT after the NaOH treatment. The aerial release characteristics of thyme oil from both the HNT capsules were investigated in a closed-package atmosphere system at 4, 25, and 40 °C. The antimicrobial activity of the capsule against Escherichia coli O157:H7 was determined using the vapor phase assay. Moreover, the antimicrobial effects of the capsule against E. coli O157:H7, total mesophilic aerobic bacteria (MAB), and molds and yeasts (MY) on the surfaces of cherry tomatoes were investigated at 4 and 25 °C for 5 d. When the cherry tomatoes were exposed to the thyme oil-loaded N-HNT capsule, the number of E. coli O157:H7, MAB, and MY significantly reduced during storage.


Asunto(s)
Antiinfecciosos/química , Embalaje de Alimentos , Nanotubos/química , Aceites de Plantas/química , Thymus (Planta)/química , Silicatos de Aluminio/química , Antiinfecciosos/farmacología , Arcilla , Composición de Medicamentos , Escherichia coli O157/efectos de los fármacos , Microscopía Electrónica de Transmisión , Modelos Teóricos , Termogravimetría
19.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864173

RESUMEN

We show in this report that traces of juices released from salad leaves as they become damaged can significantly enhance colonization of salad leaves by Salmonella enterica Salad juices in water increased Salmonella growth by 110% over the level seen with the unsupplemented control and in host-like serum-based media by more than 2,400-fold over control levels. In serum-based media, salad juices induced growth of Salmonella via provision of Fe from transferrin, and siderophore production was found to be integral to the growth induction process. Other aspects relevant to salad leaf colonization and retention were enhanced, such as motility and biofilm formation, which were increased over control levels by >220% and 250%, respectively; direct attachment to salad leaves increased by >350% when a salad leaf juice was present. In terms of growth and biofilm formation, the endogenous salad leaf microbiota was largely unresponsive to leaf juice, suggesting that Salmonella gains a marked growth advantage from fluids released by salad leaf damage. Salad leaf juices also enhanced pathogen attachment to the salad bag plastic. Over 5 days of refrigeration (a typical storage time for bagged salad leaves), even traces of juice within the salad bag fluids increased Salmonella growth in water by up to 280-fold over control cultures, as well as enhancing salad bag colonization, which could be an unappreciated factor in retention of pathogens in fresh produce. Collectively, the study data show that exposure to salad leaf juice may contribute to the persistence of Salmonella on salad leaves and strongly emphasize the importance of ensuring the microbiological safety of fresh produce. IMPORTANCE: Salad leaves are an important part of a healthy diet but have been associated in recent years with a growing risk of food poisoning from bacterial pathogens such as Salmonella enterica Although this is considered a significant public health problem, very little is known about the behavior of Salmonella in the actual salad bag. We show that juices released from the cut ends of the salad leaves enabled the Salmonella cells to grow in water, even when it was refrigerated. Salad juice exposure also helped the Salmonella cells to attach to the salad leaves so strongly that washing could not remove them. Collectively, the results presented in this report show that exposure to even traces of salad leaf juice may contribute to the persistence of Salmonella on salad leaves as well as priming it for establishing an infection in the consumer.


Asunto(s)
Beta vulgaris/microbiología , Lactuca/microbiología , Hojas de la Planta/microbiología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/patogenicidad , Spinacia oleracea/microbiología , Adhesión Bacteriana/efectos de los fármacos , Beta vulgaris/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Recuento de Colonia Microbiana , Medios de Cultivo/química , Microbiología de Alimentos , Lactuca/química , Hojas de la Planta/química , Hojas de la Planta/fisiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/fisiología , Sideróforos/biosíntesis , Spinacia oleracea/química , Transferrina/metabolismo , Virulencia
20.
Food Microbiol ; 62: 62-67, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889167

RESUMEN

This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.


Asunto(s)
Adhesión Bacteriana , Pared Celular/microbiología , Celulosa/química , Contaminación de Alimentos/prevención & control , Células Vegetales/microbiología , Salmonella typhimurium/fisiología , Sonicación , Recuento de Colonia Microbiana , Flagelos , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Microbiología de Alimentos , Lactuca/microbiología , Listeria monocytogenes/fisiología , Modelos Biológicos , Pectinas/química , Xilanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA