Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337738

RESUMEN

Athletes often take sport supplements to reduce fatigue and immune disturbances during or after training. This study evaluated the acute effects of concurrent ingestion of alkaline water and L-glutamine on the salivary immunity and hormone responses of boxers after training. Twelve male boxing athletes were recruited in this study. During regular training, the participants were randomly divided into three groups and asked to consume 400 mL of alkaline water (Group A), 0.15 g/kg body weight of L-glutamine with 400 mL of water (Group G), and 0.15 g/kg of L-glutamine with 400 mL of alkaline water (Group A+G) at the same time each day for three consecutive weeks. Before and immediately after the training, saliva, heart rates, and the rate of perceived exertion were investigated. The activity of α-amylase and concentrations of lactoferrin, immunoglobulin A (IgA), testosterone, and cortisol in saliva were measured. The results showed that the ratio of α-amylase activity/total protein (TP) significantly increased after training in Group A+G but not in Group A or G, whereas the ratios of lactoferrin/TP and IgA/TP were unaffected in all three groups. The concentrations of salivary testosterone after training increased significantly in Group A+G but not in Group A or G, whereas the salivary cortisol concentrations were unaltered in all groups. In conclusion, concurrent ingestion of 400 mL of alkaline water and 0.15 g/kg of L-glutamine before training enhanced the salivary α-amylase activity and testosterone concentration of boxers, which would be beneficial for post-exercise recovery.


Asunto(s)
Boxeo , alfa-Amilasas Salivales , Humanos , Masculino , Glutamina/metabolismo , Testosterona/metabolismo , Hidrocortisona/metabolismo , Lactoferrina/metabolismo , Inmunoglobulina A/metabolismo , Atletas , Ingestión de Alimentos , Saliva/metabolismo
2.
Food Res Int ; 175: 113782, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129007

RESUMEN

Aroma has an important influence on the aroma quality of chicken meat. This study aimed to identify the characteristic aroma substances in chicken meat and elucidate their metabolic mechanisms. Using gas chromatography-olfactometry and odor activity values, we identified nonanal, octanal, and dimethyl tetrasulfide as the basic characteristic aroma compounds in chicken meat, present in several breeds. Hexanal, 1-octen-3-ol, (E)-2-nonenal, heptanal, and (E,E)-2,4-decadienal were breed-specific aroma compounds found in native Chinese chickens but not in the meat of white-feathered broilers. Metabolomics analysis showed that L-glutamine was an important metabolic marker of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol. Exogenous supplementation experiments found that L-glutamine increased the content of D-glucosamine-6-P and induced the degradation of L-proline, L-arginine, and L-lysine to enhance the Maillard reaction and promote the formation of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol, thus improving the aroma profile of chicken meat.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Odorantes/análisis , Olfatometría , Pollos , Olfato , Glutamina , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases , Carne
3.
Microbiol Spectr ; 11(6): e0161923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37882580

RESUMEN

IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) infection severely threatens human health due to high morbidity and mortality; it is urgent to develop novel strategies to tackle this problem. Metabolites belong to antibiotic adjuvants which improve the effect of antibiotics. Despite reports of L-glutamine being applied in antibiotic adjuvant for Gram-negative bacteria, how L-glutamine affects antibiotics against Gram-positive-resistant bacteria is still unclear. In this study, L-glutamine increases the antibacterial effect of gentamicin on MRSA, and it links to membrane permeability and pH gradient (ΔpH), resulting in uptake of more gentamicin. Of great interest, reduced reactive oxygen species (ROS) by glutathione was found under L-glutamine treatment; USA300 becomes sensitive again to gentamicin. This study not only offers deep understanding on ΔpH and ROS on bacterial resistance but also provides potential treatment solutions for targeting MRSA infection.


Asunto(s)
Gentamicinas , Staphylococcus aureus Resistente a Meticilina , Humanos , Gentamicinas/farmacología , Glutamina , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
4.
Nutrients ; 15(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836400

RESUMEN

We previously reported that L-glutamine reduces the severity of mucositis caused by chemoradiotherapy in patients with head and neck cancer. However, the impact of glutamine on the anti-tumor effect of chemoradiotherapy remains controversial. This study, which included 40 patients, investigated whether L-glutamine influences survival. Radiation therapy (total: 66 or 70 Gy), cisplatin, and docetaxel were co-administered for a period of 6 weeks. Patients were randomly assigned to receive either glutamine (glutamine group, n = 20) or placebo (placebo group, n = 20) during the entire course of chemoradiotherapy. We compared the overall survival and progression-free survival rates between the two groups. At 5-year follow-up, 16 (80%) and 13 (72%) patients in the glutamine and placebo groups, respectively, survived (with no significant difference in overall survival [glutamine group: 55.2 ± 12.7 months vs. placebo group: 48.3 ± 21.3 months]). A total of 14 (70%) and 12 (67%) patients in the glutamine and placebo groups, respectively, did not experience disease progression (with no significant difference in progression-free survival [glutamine group: 46.7 ± 19.5 months vs. placebo group: 43.6 ± 25.2 months]). These findings indicate that L-glutamine does not influence the survival of patients with locally advanced head and neck cancer receiving chemoradiotherapy.


Asunto(s)
Glutamina , Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Cisplatino , Quimioradioterapia/efectos adversos , Docetaxel , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
5.
Biomedicines ; 11(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37239063

RESUMEN

Advanced pancreatic cancer is underscored by progressive therapeutic resistance and a dismal 5-year survival rate of 3%. Preclinical data demonstrated glutamine supplementation, not deprivation, elicited antitumor effects against pancreatic ductal adenocarcinoma (PDAC) alone and in combination with gemcitabine in a dose-dependent manner. The GlutaPanc phase I trial is a single-arm, open-label clinical trial investigating the safety of combination L-glutamine, gemcitabine, and nab-paclitaxel in subjects (n = 16) with untreated, locally advanced unresectable or metastatic pancreatic cancer. Following a 7-day lead-in phase with L-glutamine, the dose-finding phase via Bayesian design begins with treatment cycles lasting 28 days until disease progression, intolerance, or withdrawal. The primary objective is to establish the recommended phase II dose (RP2D) of combination L-glutamine, gemcitabine, and nab-paclitaxel. Secondary objectives include safety of the combination across all dose levels and preliminary evidence of antitumor activity. Exploratory objectives include evaluating changes in plasma metabolites across multiple time points and changes in the stool microbiome pre and post L-glutamine supplementation. If this phase I clinical trial demonstrates the feasibility of L-glutamine in combination with nab-paclitaxel and gemcitabine, we would advance the development of this combination as a first-line systemic option in subjects with metastatic pancreatic cancer, a high-risk subgroup desperately in need of additional therapies.

6.
Front Nutr ; 9: 1011739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458162

RESUMEN

Glutamine supplementation has been reported to affect blood pressure (BP). However, its role in the progression of hypertension induced by high salt diet (HSD) has not been elucidated. Male normotensive Wistar rats were exposed to high salt diet and treated with different doses of glutamine supplementation. Rats aged 6 weeks were assigned to five groups: (1) Normal-salt diet (0.3% NaCl, NSD); (2) High-salt diet (8% NaCl, HSD); (3) High-salt + low-dose diet (8% NaCl, 0.5 g of L-glutamine/kg body weight, HSLGD); (4) High-salt + middle-dose diet (8% NaCl, 1.5 g of L-glutamine/kg body weight, HSMGD); and (5) High-salt + high-dose diet (8% NaCl, 2.5 g of L-glutamine/kg body weight, HSHGD). After supplementing different doses of glutamine to male Wistar 6-week-old rats fed with HSD for 7 weeks, we found no difference in body weight among groups. Importantly, we showed that dietary L-glutamine supplementation could prevent the development of hypertension in a dose-dependent manner [dramatically lowering systolic blood pressure (SBP) and slightly reducing diastolic blood pressure (DBP) of hypertensive rats, while the differences of DBP between groups did not reach statistical significance]. Our data further elucidated that dietary glutamine supplementation mildly alleviated the degree of left ventricular hypertrophy, including interventricular septal thickness (IVST) and left ventricular posterior wall thickness (LVPWT) in hypertensive rats. Together, our results offer evidence that the dietary uptake of glutamine may be associated with attenuating the development of high salt-induced hypertension and slightly alleviating the degree of left ventricular hypertrophy in hypertensive rats. Therefore, glutamine supplementation may act as a prospective dietary intervention for the treatment of hypertension.

7.
J Food Biochem ; 46(12): e14420, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36125865

RESUMEN

We evaluated the effects of supplementation of L-alanine and L-glutamine on blood glucose levels and biochemical parameters in alloxan-induced diabetic rat. Forty-nine animals were distributed into seven equal groups. Except for the non-diabetic control, diabetes was induced in all groups by intravenous alloxan injection followed by daily supplementation with amino acids for 14 days. Weight and blood glucose were monitored during supplementation, while biochemical parameters such as liver and renal functions, lipid profile, and antioxidant markers were evaluated post-intervention. A significant increase (p < .05) in weight and decrease in blood glucose were observed in the amino acid(s) treated groups. The supplementation with both amino acids restored important tissue antioxidants, liver and kidney functions and rescued islets cells degeneration. Histopathological examinations of important tissues showed the restoration of alloxan-induced physiopathological changes by the amino acids. Thus, these amino acids might serve as nutraceuticals for the management and treatment of diabetes. PRACTICAL APPLICATIONS: The discovery and production of antidiabetic bioactive compounds are often challenging, and the existing antidiabetic drugs are expensive. Amino acids are key regulators of glucose metabolism, insulin secretion, and insulin sensitivity; thus, they can play a crucial role in alleviating diabetes. Here, we present findings that strongly suggest the potential of pure amino acids (L-alanine and L-glutamine) for the management and treatment of diabetes. We show that these amino acids, when supplemented singly or coadministered can lower blood glucose levels and restore several other biochemical parameters implicated in diabetes. Hence, these cheap amino acids may be consumed as nutraceuticals or food supplements by diabetics for the treatment/management of diabetes. Foods rich in these amino acids may also be consumed as part of the diet of diabetic patients.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Ratas , Animales , Glucemia/metabolismo , Glutamina/efectos adversos , Ratas Wistar , Aloxano/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/farmacología , Antioxidantes/uso terapéutico , Alanina/efectos adversos
8.
In Vivo ; 36(4): 1761-1768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35738636

RESUMEN

BACKGROUND/AIM: Hydration and hydroxyurea (HU) can modify sickle cell disease (SCD) severity. Optimal nutrition and L-glutamine (Gln) may provide further amelioration. PATIENTS AND METHODS: Reviews of medical records and nutrition surveys were used to investigate severity of pediatric patients with SCD in relation to nutrition, growth, hematologic parameters, and diseasemodifying agents. RESULTS: Among 25 females and 25 males (9.1±7 years), beta-globin genotypes were: HbSS/Sß°, 60%; HbSC, 32%; HbSß+, 8%. The mean number of annual pain crises (APC) was 0.97±1.1. APCs increased ≥2-fold as HbF dropped to <10% with age. Proper hydration and nutrition correlated with younger ages and fewer APCs. Height and weight Z-scores were ≤-1SD in 20% of 35 surveyed patients (12±7.8 years), who had more APCs (2.5±2.5 vs. 1±1.3, p=0.03). Prealbumin levels were overall low. Twenty-two of 28 patients on HU reported ≥90% adherence - with higher mean corpuscular volume (92±9.6 vs. 74±10 f/l, p<0.01). Seventy percent of Gln prescriptions were filled. Compliance over 23 months was ≥70% in 12 patients, including 2 on chronic transfusion. Of 10 evaluable patients, 6 (8.8±2.2 years) had fewer APCs with Gln (mean 0.2 vs. 0.9, p=0.016), with increasing prealbumin levels (14.1 to 15.8 mg/dl, p=0.1). CONCLUSION: Younger, and well-nourished, well-hydrated patients have a milder clinic course. Disease severity was the worse in undernourished teenagers with suboptimal compliance. L-Glutamine with prealbumin monitoring should be considered for further evaluation in pediatric SCD.


Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Glutamina , Estado Nutricional , Cooperación del Paciente , Adolescente , Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/uso terapéutico , Niño , Femenino , Glutamina/uso terapéutico , Hospitales Públicos , Humanos , Hidroxiurea/uso terapéutico , Masculino , Prealbúmina
9.
Carbohydr Polym ; 286: 119316, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337521

RESUMEN

Sulfated chitooligosaccharide was reported to possess inhibition effect on human immunodeficiency virus (HIV) entry into host cells. Herein, we prepared chitooligosaccharide COS and its sulfate derivative SCOS and explored whether the sulfation modification can enhance the anti-influenza A virus (IAV) activity of COS. Interestingly, we discovered that SCOS possessed broad-spectrum anti-IAV effects with low toxicity, while the non-sulfated chitooligosaccharide COS had very low inhibition on IAV, verifying that the sulfation modification is essential for the anti-IAV actions of chitooligosaccharide. SCOS may target virus hemagglutinin (HA) protein to block both virus adsorption and membrane fusion processes. Oral administration of SCOS significantly decreased pulmonary viral titers and improved survival rate in IAV infected mice, comparable to the effects of Oseltamivir. Therefore, our findings support further studies on the use of SCOS as a novel entry inhibitor for IAV and as a supplement to current therapeutics for influenza.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Quitosano , Humanos , Virus de la Influenza A/fisiología , Ratones , Oligosacáridos , Sulfatos/farmacología
10.
Plant Physiol Biochem ; 172: 1-13, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007889

RESUMEN

L-Glutamine (Gln) is a proteinogenic amino acid, N transporter and NH3 carrier, engaging in diversified pathways for synthesizing many important molecules. However, the effects of exogenous Gln on plant growth and development remain largely unknown. In this study, different concentrations of Gln were supplemented in the poplar hybrid 'Nanlin895' culture medium as a sole N source. Their effects on poplar growth, photosynthesis, N metabolism-related enzymes and metabolites were elucidated. Strikingly, 0.5 mM Gln-fed poplars showed no considerable growth compromise compared to the inorganic N control (CK-N), even though their N supply level was only half that of the CK-N control. What's more, their NUE was enhanced. In addition, 0.5 mM Gln treatment significantly increased the contents of amino acids in coordination with soluble sugars in the roots, while marginal effects in the leaves were observed compared to CK-N. By contrast, applying a high level of Gln (>0.5 mM) resulted in larger accumulation of amino acids and starch, but lower level of soluble sugars, particularly in the roots, followed by adverse effects on poplar biomass, photosynthesis, enzyme activities and NUE; consequently, poplar growth was inhibited. Collectively, these findings allow us to deduce that poplar plants are competent to take up and utilize Gln as a sole N source. When applied at an appropriate level, Gln could promote a dynamic equilibrium of N and C, conferring sound growth performance and additional benefit for the environment as indicated by higher NUE, lower N input and higher biocompatible nature than the inorganic N.


Asunto(s)
Nitrógeno , Populus , Glutamina , Hojas de la Planta , Raíces de Plantas
11.
J Anim Sci Technol ; 64(6): 1046-1062, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36811992

RESUMEN

This study investigated the effects of L-glutamine (Gln) supplementation on growth performance, physiological traits, heat shock proteins (HSPs), and gene expression related to muscle and adipose tissue development in Hanwoo steers under heat stress (HS) conditions. Eight Hanwoo steers (initial body weight [BW] 570.7 ± 43.6 kg, months of age 22.3 ± 0.88) were randomly separated into two groups, control and treatment, and supplied with the concentration (1.5% of BW kg/day/head) and rice straw (1.5 kg/day/head). The treatment group were fed the Gln supplementation (0.5% of concentration, as-fed basis) once a day at 08:00 h. Blood samples for the assessment of haematological and biochemical parameters and the separation of peripheral blood mononuclear cells (PBMCs) were collected four times, at 0, 3, 6, and 10 weeks of the experiment. Feed intake was measured daily. BW to analyze growth performance and hair follicle collection to analyze the expression of HSPs were executed four times at 0, 3, 6, and 10 weeks. To analyze gene expression, longissimus dorsi muscle samples were collected by biopsy at the end of the study. As a result, growing performance, including final BW, average daily gain, and gain-to-feed ratio, were not different between the two groups. Leukocytes including lymphocytes and granulocytes, tended to increase in the Gln supplementation group (p = 0.058). There were also no differences in biochemical parameters shown between the two groups, except total protein and albumin, both of which were lower in the Gln supplementation group (p < 0.05). Gene expressions related to muscle and adipose tissue development were not different between the two groups. As temperature-humidity index (THI) increased, HSP70 and HSP90 expression in the hair follicle showed a high correlation. HSP90 in the hair follicle was decreased in the treatment group compared with the control group at 10 weeks (p < 0.05). Collectively, dietary Gln supplementation (0.5% of concentration, as-fed basis) may not be influential enough to affect growth performance and gene expression related to muscle and adipose tissue development in steers. However, Gln supplementation increased the number of immune cells and decreased HSP90 in the hair follicle implying HS reduction in the corresponding group.

12.
Anim Biosci ; 35(3): 422-433, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34530502

RESUMEN

OBJECTIVE: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. METHODS: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). RESULTS: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). CONCLUSION: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

13.
Animals (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944330

RESUMEN

The current study tested the hypothesis that 1.0% dietary inclusion of L-glutamine (Gln), an non-essential amino acid that influences protein synthesis, can improve internal egg quality, including amino acids profile. Thirty-week-old Bovans Brown laying hens in their middle laying period were assigned to one of the two experimental groups (12 replicate cages, 2 hens/cage) with Gln in the form of alpha-ketoglutarate (10 g/kg) or without Gln inclusion. The experimental period lasted for 30 wks, from the 31st to the 60th week of age of hens, when eggs were collected and selected egg quality indices were determined. Gln supplementation had no effect on albumen and egg yolk share, albumen and yolk basal indices and composition, including yolk cholesterol content. However, Gln decreased the lipid content of the egg albumen (p < 0.001), and influenced albumen amino acid profile, increasing content of asparagine (p < 0.05), phenylalanine (p < 0.05), proline (p < 0.001), tryptophan (p < 0.01), and tyrosine (p < 0.05). In conclusion, the study shows a potential role of Gln supplementation for enhancing nutritional values of eggs by lower lipid content and higher amino acid profile.

14.
BMC Nephrol ; 22(1): 250, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225671

RESUMEN

BACKGROUND: Taurine depletion occurs in patients with end-stage chronic kidney disease (CKD). In contrast, in the absence of CKD, plasma taurine is reported to increase following dietary L-glutamine supplementation. This study tested the hypothesis that taurine biosynthesis decreases in a rat CKD model, but is rectified by L-glutamine supplementation. METHODS: CKD was induced by partial nephrectomy in male Sprague-Dawley rats, followed 2 weeks later by 2 weeks of 12% w/w L-glutamine supplemented diet (designated NxT) or control diet (NxC). Sham-operated control rats (S) received control diet. RESULTS: Taurine concentration in plasma, liver and skeletal muscle was not depleted, but steady-state urinary taurine excretion (a measure of whole-body taurine biosynthesis) was strongly suppressed (28.3 ± 8.7 in NxC rats versus 78.5 ± 7.6 µmol/24 h in S, P < 0.05), accompanied by reduced taurine clearance (NxC 0.14 ± 0.05 versus 0.70 ± 0.11 ml/min/Kg body weight in S, P < 0.05). Hepatic expression of mRNAs encoding key enzymes of taurine biosynthesis (cysteine sulphinic acid decarboxylase (CSAD) and cysteine dioxygenase (CDO)) showed no statistically significant response to CKD (mean relative expression of CSAD and CDO in NxC versus S was 0.91 ± 0.18 and 0.87 ± 0.14 respectively). Expression of CDO protein was also unaffected. However, CSAD protein decreased strongly in NxC livers (45.0 ± 16.8% of that in S livers, P < 0.005). L-glutamine supplementation failed to rectify taurine biosynthesis or CSAD protein expression, but worsened CKD (proteinuria in NxT 12.5 ± 1.2 versus 6.7 ± 1.5 mg/24 h in NxC, P < 0.05). CONCLUSION: In CKD, hepatic CSAD is depleted and taurine biosynthesis impaired. This is important in view of taurine's reported protective effect against cardio-vascular disease - the leading cause of death in human CKD.


Asunto(s)
Carboxiliasas/metabolismo , Suplementos Dietéticos , Glutamina/administración & dosificación , Hígado/enzimología , Insuficiencia Renal Crónica/metabolismo , Taurina/biosíntesis , Animales , Cisteína-Dioxigenasa/metabolismo , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Nefrectomía , Proteinuria , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/dietoterapia , Taurina/metabolismo
15.
J Anim Sci ; 99(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33755169

RESUMEN

Previous research demonstrates that supplementing 0.20% l-glutamine (GLN) in the diets of newly weaned and transported pigs improves growth rate to a similar extent as providing dietary antibiotics (AB). However, research comparing the effects of GLN vs. AB on intestinal physiology and the microbiome is limited. Therefore, the study objective was to compare the effects of supplementing nursery diets with GLN, AB, or no dietary antibiotics (NA) on intestinal physiology and the microbiome of pigs in a production environment following weaning and transport. Mixed-sex piglets (N = 480; 5.62 ± 0.06 kg body weight [BW]) were weaned (18.4 ± 0.2 d of age) and transported for 12 h in central Indiana, for two replicates, during the summer of 2016 and the spring of 2017. Pens were blocked by BW and allotted to one of the three dietary treatments (n = 10 pens/dietary treatment/replicate [8 pigs/pen]): AB (chlortetracycline [441 ppm] + tiamulin [38.6 ppm]), GLN (0.20% as-fed), or NA fed for 14 d. From day 14 to 34, pigs were fed common AB-free diets in two phases. On day 33, villus height:crypt depth tended to be increased (P = 0.07; 7.0%) in GLN and AB pigs vs. NA pigs. On day 33, glucagon-like peptide 2 (GLP-2) mRNA abundance was decreased (P = 0.01; 50.3%) in GLN and NA pigs vs. AB pigs. Crypt depth was increased overall on day 33 (P = 0.01; 16.2%) during the spring replicate compared with the summer replicate. Villus height:crypt depth was reduced (P = 0.01; 9.6%) during the spring replicate compared with the summer replicate on day 33. On day 13, tumor necrosis factor-alpha and occludin mRNA abundance was increased (P ≤ 0.04; 45.9% and 106.5%, respectively) and zonula occludens-1 mRNA abundance tended to be greater (P = 0.10; 19.2%) in the spring replicate compared with the summer replicate. In addition, AB pigs had increased (P = 0.01; 101.3%) GLP-2 mRNA abundance compared with GLN and NA pigs. Microbiome analysis indicated that on day 13, dietary treatment altered the microbiota community structure (P = 0.03). Specifically, the AB pigs tended to be distinct from both the NA and GLN pigs (P = 0.08), and Lactobacillus was increased nearly 2-fold in AB compared with NA pigs (q = 0.04) and GLN pigs (q = 0.22). In conclusion, GLN supplementation tended to improve some morphological markers of intestinal health similarly to AB pigs, while the microbiome composition in GLN pigs was more similar to NA pigs than AB pigs.


Asunto(s)
Glutamina , Microbiota , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Porcinos , Destete
16.
Vaccines (Basel) ; 9(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572639

RESUMEN

BACKGROUND: Although glutamine is able to improve the immune response, its action in the upper airway immunity against the influenza virus vaccine remains unclear. Therefore, we aimed to evaluate the L-glutamine supplementation effect on the mucosal immune/inflammatory response of elderly subjects vaccinated against the influenza virus. METHODS: Saliva sampling from 83 physically active elderly volunteers were collected pre- and 30 days after influenza virus vaccination and supplementation with L-glutamine (Gln, n = 42) or placebo (PL, n = 41). RESULTS: Gln group showed higher salivary levels of interleukin (IL)-17, total secretory immunoglobulin A (SIgA), and specific-SIgA post-vaccination than values found pre-vaccination and in the PL group post-vaccination. Whereas higher salivary levels of IL-6 and IL-10 were observed post-vaccination in the Gln group, IL-37 levels were lower post-vaccination in both groups than the values pre-vaccination. Tumor necrosis factor (TNF)-α levels were unchanged. Positive correlations between IL-6 and IL-10 were found in all volunteer groups pre- and post-vaccination and also between IL-17 and IL-6 or IL-10 in the Gln group post-vaccination. A negative correlation between IL-37 and IL-10 was found pre- and post-vaccination in the PL group. CONCLUSION: Gln supplementation was able to modulate salivary cytokine profile and increase SIgA levels, both total and specific to the influenza virus vaccine, in physically active elderly subjects.

17.
Inflammation ; 44(2): 617-632, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33128666

RESUMEN

The aim of this study was to evaluate the effects of glutamine supplementation or exercise on gastric emptying and intestinal inflammation in rats with ulcerative colitis (UC). Strength exercise consisted of jump training 4 × 10 repetitions/5 days a week/8 weeks with progressive overload. Endurance exercise consisted of swimming without overload for a period of 1 h a day/5 days a week/8 weeks. Another group (sedentary) of animals was supplemented with L-glutamine (1 g/kg of body weight) orally for 8 weeks before induction of UC. Colitis was induced by intra-colonic administration of 1 mL of 4% acetic acid. We assessed gastric emptying, macroscopic and microscopic scoring, oxidative stress markers, and IL-1ß, IL-6, and (TNF-α) levels. The UC significantly increased (p < 0.05) the gastric emptying compared with the saline control group. We observed a significantly decrease (p < 0.05) in body weight gain in UC rats compared with the control groups. Both exercise interventions and L-glutamine supplementation significantly prevented (p < 0.05) weight loss compared with the UC group. Strength and endurance exercises significantly prevented (p < 0.05) the increase of microscopic scores and oxidative stress (p < 0.05). L-glutamine supplementation in UC rats prevented hemorrhagic damage and improved oxidative stress markers (p < 0.05). Strength and endurance exercises and glutamine decreased the concentrations of inflammatory cytokines IL-1ß, IL-6, and TNF-α compared with the UC group (p < 0.05). Strength and endurance exercises and L-glutamine supplementation prevented intestinal inflammation and improved cytokines and oxidative stress levels without altering gastric dysmotility in rats with UC.


Asunto(s)
Colitis Ulcerosa/terapia , Fármacos Gastrointestinales/uso terapéutico , Motilidad Gastrointestinal/efectos de los fármacos , Glutamina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Administración Oral , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Biomarcadores/metabolismo , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colitis Ulcerosa/fisiopatología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Terapia Combinada , Citocinas/metabolismo , Suplementos Dietéticos , Esquema de Medicación , Fármacos Gastrointestinales/farmacología , Motilidad Gastrointestinal/fisiología , Glutamina/farmacología , Masculino , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Resultado del Tratamiento , Pérdida de Peso/efectos de los fármacos , Pérdida de Peso/fisiología
18.
Biomolecules ; 10(12)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334074

RESUMEN

Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.


Asunto(s)
Citoprotección , Soluciones para Diálisis/efectos adversos , Dipéptidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/patología , Diálisis Peritoneal , Arteriolas/efectos de los fármacos , Niño , Citoprotección/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Modelos Biológicos , Proteómica
19.
Transl Anim Sci ; 4(3): txaa157, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33123679

RESUMEN

Supplementing nursery diets with 0.20% L-glutamine (GLN) may provide similar growth and health benefits as dietary antibiotics, but it was unknown if greater inclusion levels may provide additional benefits. Therefore, the study objective was to evaluate the impact of replacing dietary antibiotics with increasing GLN levels on growth performance, therapeutic antibiotic treatment rates, welfare measures, and production costs in pigs after weaning and transport. We hypothesized that withholding dietary antibiotics may negatively impact performance and increase therapeutic treatment rate, and that diet supplementation with 0.20% to 1.00% GLN may incrementally improve productivity and reduce therapeutic antibiotic treatment rates compared with dietary antibiotics. Mixed sex pigs (N = 308; 5.64 ± 0.06 kg body weight [BW]) were weaned (19.1 ± 0.2 d of age) and transported in central Indiana in 2017. Pigs were blocked by BW and allotted to one of seven dietary treatments (n = 8 pens/dietary treatment): dietary antibiotics (positive control [PC]; chlortetracycline [441 mg/kg] + tiamulin [38.6 mg/kg]), no antibiotics or added GLN (negative control [NC]), 0.20% GLN, 0.40% GLN, 0.60% GLN, 0.80% GLN, or 1.00% GLN fed for 14 d. From d 14 to 35, pigs were provided nonantibiotic common diets in two phases. Overall, average daily gain (ADG) was reduced (P = 0.01; 17.7%) from d 0 to 14 in NC, 0.20% GLN, 0.60% GLN, 0.80% GLN, and 1.00% GLN pigs compared with PC pigs, but no ADG differences were detected between 0.40% GLN pigs and PC pigs. Increasing GLN in the diet tended to increase ADG (linear; P = 0.10). Overall, d 35 BW was greater (P = 0.01) in 0.80% GLN and PC pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, and was greater for 0.40% GLN and 1.00% GLN pigs vs. 0.20% GLN pigs. However, no d 35 BW differences were detected (P > 0.05) between PC, 0.40% GLN, 0.80% GLN, and 1.00% GLN pigs. Increasing GLN in the diet tended to increase (linear; P = 0.08) d 35 BW. Overall, income over feed and therapeutic injectable antibiotics cost (IOFAC) for enteric and unthrifty challenges were greater (P = 0.02) in 0.80% GLN pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, but no IOFACs for enteric and unthrifty challenges differences were detected between 0.80% GLN pigs and 0.40% GLN, 1.00% GLN, and PC pigs. In conclusion, GLN supplemented pigs had improved performance after weaning and transport compared with the NC pigs with 0.40% GLN being the most effective level.

20.
BMC Pharmacol Toxicol ; 21(1): 71, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004081

RESUMEN

BACKGROUND: Cantharidin (CTD) is a compound which have the potential to be exploited as an antitumor drug, and it has been demonstrated antitumor effects in a variety of cancers. However, the use is limited due to its severe toxicity. It has reported that it can induce fatal cardiac arrhythmias. Fortunately, we found that L-glutamine can alleviate cardiac toxicity caused by cantharidin in mice. METHODS: To investigate the protective effect of L-glutamine, we used a high dose of cantharidin in mice to create a model of cardiotoxicity. In the experimental mice, glutamine was given orally half an hour before they were administrated with cantharidin. The mice of control group were intraperitoneally injected with DMSO solution. The general state of all mice, cardiac mass index, electrocardiogram change and biological markers were determined. Hematoxylin-eosin staining (HE staining) of heart tissue was carried out in each group to reflect the protective effect of glutamine. To investigate the mechanisms underlying the injury and cardio-protection, multiple oxidative stress indexes were determined and succinate dehydrogenase activity was evaluated. RESULT: The results showed that L-glutamine (Gln) pretreatment reduced weight loss and mortality. It also decreased the biological markers (p < 0.05), improved electrocardiogram and histological changes that CTD induced cardiotoxicity in mice. Subsequently, the group pretreated with L-glutamine before CTD treatment increases in MDA but decreases in SOD and GSH, in comparison to the group treated with CTD alone. Besides, succinate dehydrogenase activity also was improved when L-glutamine was administrated before cantharidin compared to cantharidin. CONCLUSIONS: This study provided evidence that L-glutamine could protect cardiac cells against the acute cantharidin-induced cardiotoxicity and the protective mechanism of glutamine may be related to the myocardial cell membrane or the tricarboxylic acid cycle in the mitochondria.


Asunto(s)
Antineoplásicos , Cantaridina , Cardiotónicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Glutamina/uso terapéutico , Animales , Cardiotónicos/farmacología , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/fisiopatología , Femenino , Glutamina/farmacología , Glutatión/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiología , Malondialdehído/metabolismo , Ratones Endogámicos BALB C , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA