Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6244, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485993

RESUMEN

In recent decades, numerous studies have examined the effects of climate change on the responses of plants. These studies have primarily examined the effects of solitary stress on plants, neglecting the simultaneous effects of mixed stress, which are anticipated to transpire frequently as a result of the extreme climatic fluctuations. Therefore, this study investigated the impact of applied chitosan on boosting the resistance responses of peanuts to alkali and mixed drought-alkali stresses. Peanuts were grown in mid-alkaline soil and irrigated with full irrigation water requirements (100%IR), represented alkali condition (100% IR × alkali soil) and stress conditions (70% IR × alkali soil-represented mixed drought-alkali conditions). Additionally, the plants were either untreated or treated with foliar chitosan. The study evaluated various plant physio-chemical characteristics, including element contents (leaves and roots), seed yield, and irrigation water use efficiency (IWUE). Plants that experienced solitary alkali stress were found to be more vulnerable. However, chitosan applications were effective for reducing (soil pH and sodium absorption), alongside promoting examined physio-chemical measurements, yield traits, and IWUE. Importantly, when chitosan was applied under alkali conditions, the accumulations of (phosphorus, calcium, iron, manganese, zinc, and copper) in leaves and roots were maximized. Under mixed drought-alkali stresses, the results revealed a reduction in yield, reaching about 5.1 and 5.8% lower than under (100% IR × alkali), in the first and second seasons, respectively. Interestingly, treated plants under mixed drought-alkali stresses with chitosan recorded highest values of relative water content, proline, yield, IWUE, and nutrient uptake of (nitrogen, potassium, and magnesium) as well as the lowest sodium content in leaves and roots. Enhances the accumulation of (N, K, and Mg) instead of (phosphorus, calcium, iron, manganese, zinc, and copper) was the primary plant response to chitosan applications, which averted severe damage caused by mixed drought-alkali conditions, over time. These findings provide a framework of the nutrient homeostasis changes induced by chitosan under mixed stresses. Based on the findings, it is recommended under mixed drought-alkali conditions to treat plants with chitosan. This approach offers a promising perspective for achieving optimal yield with reduced water usage.


Asunto(s)
Arachis , Quitosano , Quitosano/farmacología , Calcio , Cobre , Manganeso , Plantas , Sodio , Agua/fisiología , Zinc , Suelo/química , Fósforo , Hierro
2.
J Transl Med ; 22(1): 294, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515140

RESUMEN

Over the last decades, the Mediterranean diet gained enormous scientific, social, and commercial attention due to proven positive effects on health and undeniable taste that facilitated a widespread popularity. Researchers have investigated the role of Mediterranean-type dietary patterns on human health all around the world, reporting consistent findings concerning its benefits. However, what does truly define the Mediterranean diet? The myriad of dietary scores synthesizes the nutritional content of a Mediterranean-type diet, but a variety of aspects are generally unexplored when studying the adherence to this dietary pattern. Among dietary factors, the main characteristics of the Mediterranean diet, such as consumption of fruit and vegetables, olive oil, and cereals should be accompanied by other underrated features, such as the following: (i) specific reference to whole-grain consumption; (ii) considering the consumption of legumes, nuts, seeds, herbs and spices often untested when exploring the adherence to the Mediterranean diet; (iii) consumption of eggs and dairy products as common foods consumed in the Mediterranean region (irrespectively of the modern demonization of dietary fat intake). Another main feature of the Mediterranean diet includes (red) wine consumption, but more general patterns of alcohol intake are generally unmeasured, lacking specificity concerning the drinking occasion and intensity (i.e., alcohol drinking during meals). Among other underrated aspects, cooking methods are rather simple and yet extremely varied. Several underrated aspects are related to the quality of food consumed when the Mediterranean diet was first investigated: foods are locally produced, minimally processed, and preserved with more natural methods (i.e., fermentation), strongly connected with the territory with limited and controlled impact on the environment. Dietary habits are also associated with lifestyle behaviors, such as sleeping patterns, and social and cultural values, favoring commensality and frugality. In conclusion, it is rather reductive to consider the Mediterranean diet as just a pattern of food groups to be consumed decontextualized from the social and geographical background of Mediterranean culture. While the methodologies to study the Mediterranean diet have demonstrated to be useful up to date, a more holistic approach should be considered in future studies by considering the aforementioned underrated features and values to be potentially applied globally through the concept of a "Planeterranean" diet.


Asunto(s)
Dieta Mediterránea , Humanos , Dieta , Conducta Alimentaria , Aceite de Oliva , Especias , Estilo de Vida
3.
Toxins (Basel) ; 15(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38133197

RESUMEN

Ascochyta blight, caused by Ascochyta fabae, poses a significant threat to faba bean and other legumes worldwide. Necrotic lesions on stems, leaves, and pods characterize the disease. Given the economic impact of this pathogen and the potential involvement of secondary metabolites in symptom development, a study was conducted to investigate the fungus's ability to produce bioactive metabolites that might contribute to its pathogenicity. For this investigation, the fungus was cultured in three substrates (Czapek-Dox, PDB, and rice). The produced metabolites were analyzed by NMR and LC-HRMS methods, resulting in the dereplication of seven metabolites, which varied with the cultural substrates. Ascochlorin, ascofuranol, and (R)-mevalonolactone were isolated from the Czapek-Dox extract; ascosalipyrone, benzoic acid, and tyrosol from the PDB extract; and ascosalitoxin and ascosalipyrone from the rice extract. The phytotoxicity of the pure metabolites was assessed at different concentrations on their primary hosts and related legumes. The fungal exudates displayed varying degrees of phytotoxicity, with the Czapek-Dox medium's exudate exhibiting the highest activity across almost all legumes tested. The species belonging to the genus Vicia spp. were the most susceptible, with faba bean being susceptible to all metabolites, at least at the highest concentration tested, as expected. In particular, ascosalitoxin and benzoic acid were the most phytotoxic in the tested condition and, as a consequence, expected to play an important role on necrosis's appearance.


Asunto(s)
Fabaceae , Toxinas Biológicas , Vicia faba , Fabaceae/microbiología , Vicia faba/microbiología , Verduras , Productos Agrícolas , Ácido Benzoico , Extractos Vegetales
4.
Plants (Basel) ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653874

RESUMEN

Astragalus species have a certain capacity to enrich selenium (Se) and are the strongest Se hyperaccumulator legumes known globally at present. The biochar application to medicinal plants has been reported to affect plant metabolites. In this study, we aimed to employ hyperaccumulating Astragalus species in the plant growth of selenium-lacked soil, while also investigating the impact of varying selenium doses and biochar application on legumes growth, selenium content, and secondary metabolite production. Applying biochar to soil, along with a Se concentration of 6 mg/kg, significantly enhanced the growth, Se content, total polysaccharide content, and calycosin-7-glucoside content of Astragalus species (p < 0.05). Importantly, the Se and biochar application also led to a significant improvement in Se content in ABH roots (p < 0.05). Meanwhile, the content of total flavonoids in ABH roots could be promoted by a Se concentration of 3 mg/kg and biochar application in soil. Additionally, the Se enrichment coefficients of Astragalus species under Se treatments were significantly higher than those under control treatment, with a marked difference observed across all treatments, whether roots or above-ground (p < 0.05). Remarkably, the Se transport coefficients of Astragalus species were observed to be lower than one, except for the transport coefficient of AB in the Se concentration of the control treatment (0 mg/kg). This result showed that a medium concentration treatment of Se and biochar application in soil not only promotes the growth of Astragalus species and the uptake of exogenous Se but also increases the active component content, meanwhile enhancing the Se enrichment and transport capacity. Taken as a whole, the present findings offer a more comprehensive understanding of the interplay between distinct Se levels, as well as the addition of biochar in soil, providing valuable insight for the cultivation of Se-rich Astragalus in Se-deficient soil-plant systems.

5.
Foods ; 12(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37685196

RESUMEN

High activity of lipoxygenase (LOX) has been identified as a primary cause of oxidative rancidity in legumes. In this study, the application of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) (5 W, 10 min) resulted in an obvious decrease in LOX activity in mung bean (MB), kidney bean (KB), and adzuki bean (AB) flours by 36.96%, 32.49%, and 28.57%, respectively. Moreover, DBD-ACP induced significant increases (p < 0.05) in content of soluble dietary fiber, saturated fatty acids, and methionine. The starch digestibility of legumes was changed, evidenced by increased (p < 0.05) slowly digestible starch and rapidly digestible starch, while resistant starch decreased. Furthermore, DBD-ACP treatment significantly affected (p < 0.05) the hydration and thermal characteristics of legume flours, evidenced by the increased water absorption index (WAI) and gelatinization temperature, and the decreased swelling power (SP) and gelatinization enthalpy (ΔH). Microscopic observations confirmed that DBD-ACP treatment caused particle aggregation.

6.
Field Crops Res ; 299: 108975, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529086

RESUMEN

Grain legumes are key components of sustainable production systems in sub-Saharan Africa, but wide-spread nutrient deficiencies severely restrict yields. Whereas legumes can meet a large part of their nitrogen (N) requirement through symbiosis with N2-fixing bacteria, elements such as phosphorus (P), potassium (K) and secondary and micronutrients may still be limiting and require supplementation. Responses to P are generally strong but variable, while evidence for other nutrients tends to show weak or highly localised effects. Here we present the results of a joint statistical analysis of a series of on-farm nutrient addition trials, implemented across four legumes in four countries over two years. Linear mixed models were used to quantify both mean nutrient responses and their variability, followed by a random forest analysis to determine the extent to which such variability can be explained or predicted by geographic, environmental or farm survey data. Legume response to P was indeed variable, but consistently positive and we predicted application to be profitable for 67% of farms in any given year, based on prevailing input costs and grain prices. Other nutrients did not show significant mean effects, but considerable response variation was found. This response heterogeneity was mostly associated with local or temporary factors and could not be explained or predicted by spatial, biophysical or management factors. An exception was K response, which displayed appreciable spatial variation that could be partly accounted for by spatial and environmental covariables. While of apparent relevance for targeted recommendations, the minor amplitude of expected response, the large proportion of unexplained variation and the unreliability of the predicted spatial patterns suggests that such data-driven targeting is unlikely to be effective with current data.

7.
Neotrop Entomol ; 52(5): 945-955, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37498512

RESUMEN

Pollen is a food source for adult Chrysoperla externa (Hagen), whose larvae are biocontrol agents against pests. However, adults may face challenges in foraging for pollen due to differences in pollen accessibility and variability in pollen morphology and chemistry. In the laboratory, we investigated the ability of adult C. externa to consume pollen from flowers of Cajanus cajan, Canavalia ensiformis, Crotalaria juncea, Flemingia macrophylla, Avena strigosa, Pennisetum glaucum, Sorghum bicolor, and Zea mays, and we explored whether adults chose any of these pollens based on their quantitative and qualitative features. Cajanus cajan and F. macrophylla pollen were the only ones not consumed by adults when confined to flowers. Pollen removed from the preanthesis buds was offered simultaneously for 24 and 48 h. In both periods, adults consumed more of the medium-sized P. glaucum (with the second largest exine thickness) and large-sized Z. mays (with the thinnest exine) pollen, even though they had significantly less crude protein than Fabaceae pollen, whose sizes varied from medium (C. juncea, with the thickest exine) to large (C. ensiformis, whose exine thickness was equal to that of P. glaucum). Overall, adults consumed more Poaceae pollen than Fabaceae pollen, but the palynological features and the protein contents did not affect this choice. Our results highlighted that C. juncea, P. glaucum, S. bicolor and Z. mays are good pollen sources for adult C. externa and should be considered promising candidates in the selection of insectary plants to deploy in biocontrol programs aimed at the conservation of this lacewing.


Asunto(s)
Fabaceae , Insectos , Animales , Larva , Polen , Poaceae
8.
Prev Nutr Food Sci ; 28(2): 160-169, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37416787

RESUMEN

Storage proteins from Sphenostylis stenocarpa and Phaseolus lunatus were fractionated, and their in vitro bioactivities were investigated. Albumin, globulin, prolamin, and glutelin constituents of the respective seeds were successively fractionated using the modified Osborne method. Phenylmethylsulfonyl fluoride (1 mM) was used as a protease inhibitor. The antioxidant, anti-inflammatory, and acetylcholinesterase-inhibitory activities of the protein fractions were evaluated using different appropriate techniques. Globulin was the predominant fraction, with a yield of 43.21±0.01% and 48.19±0.03% for S. stenocarpa and P. lunatus, respectively, whereas prolamin was not detected in both seeds. The protein fraction markedly scavenges hydroxyl radicals, nitric oxide radicals, and 2,2-diphenyl-1-picryldydrazyl radicals with concomitant high free radical-reducing power. Albumin and globulin fractions elicited the highest acetylcholinesterase-inhibitory potential of 48.75% and 49.75%, respectively, indicating their great application potential in managing neurodegenerative diseases. In this study, the albumin, globulin, and glutelin fractions of these underutilized legumes showed great analeptic bioactivities, which could be utilized as health-promoting dietary supplements/products.

9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047046

RESUMEN

Desmodium styracifolium is a medicinal plant from the Desmodieae tribe, also known as Grona styracifolia. Its role in the treatment of urolithiasis, urinary infections, and cholelithiasis has previously been widely documented. The complete chloroplast genome sequence of D. Styracifolium is 149,155 bp in length with a GC content of 35.2%. It is composed of a large single copy (LSC) of 82,476 bp and a small single copy (SSC) of 18,439 bp, which are separated by a pair of inverted repeats (IR) of 24,120 bp each and has 128 genes. We performed a comparative analysis of the D. styracifolium cpDNA with the genome of previously investigated members of the Sesamoidea tribe and on the outgroup from its Phaseolinae sister tribe. The size of all seven cpDNAs ranged from 148,814 bp to 151,217 bp in length due to the contraction and expansion of the IR/SC boundaries. The gene orientation of the SSC region in D. styracifolium was inverted in comparison with the other six studied species. Furthermore, the sequence divergence of the IR regions was significantly lower than that of the LSC and the SSC, and five highly divergent regions, trnL-UAA-trnT-UGU, psaJ-ycf4, psbE-petL, rpl36-rps8, and rpl32-trnL-UGA, were identified that could be used as valuable molecular markers in future taxonomic studies and phylogenetic constructions.


Asunto(s)
Fabaceae , Genoma del Cloroplasto , Filogenia , Fabaceae/genética , ADN de Cloroplastos/genética , Verduras/genética
10.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108842

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of ß-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tß5 and tß7) forms of NLL ß5 and ß7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete ß5 and ß7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1ß), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1ß, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tß5 and tß7 conglutin proteins did not have these molecular effects. These results suggest that ß5 and ß7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL ß-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL ß5 and ß7 excellent innovative candidates as functional foods.


Asunto(s)
Lupinus , Lupinus/metabolismo , Suplementos Dietéticos
11.
Biol Trace Elem Res ; 201(10): 4951-4960, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36600168

RESUMEN

Selenium (Se) agronomic biofortification of plants is effective for alleviating Se deficiencies in human and livestock populations. Less is known about how higher selenate amendment rates, or how foliar compared with granular selenate amendments affect forage Se concentrations. Therefore, we compared the effects of a higher sodium selenate foliar amendment rate (900 vs. 90 g Se ha-1), and two selenate amendment methods (liquid foliar sodium selenate vs. granular slow-release Selcote Ultra® at 0, 45, and 90 g Se ha-1) on Se concentrations and Se species in forages across Oregon. The 10 × amendment rate (900 g Se ha-1) resulted in 6.4 × higher forage Se concentrations in the first cut (49.19 vs. 7.61 mg Se kg-1 plant DM, respectively) compared with the 90 g ha-1 amendment rate, indicating that forages can tolerate higher selenate amendment rates. Most Se was incorporated as SeMet (75%) in the harvested portion of the forage (37 mg Se kg-1 forage DM of the first cut) and only a limited amount was stored in the selenate reserve pool in the leaves (~ 5 mg Se kg-1 forage DM). Higher application rates of selenate amendment increased forage Se concentrations in first and second cuts, but carry over in subsequent years was negligible. Application of foliar selenate vs. granular Selcote Ultra® amendments, between 0 and 90 g Se ha-1, both resulted in a linear, dose-dependent increase in forage Se concentration. Amendments differed in their Se incorporation pattern (Se%), in that, first cut forage Se concentrations were higher with foliar selenate amendment and second, third, and residual (following spring) cut forage Se concentrations were higher with granular Selcote Ultra® amendment. Given the linear relationship between forage Se concentrations and whole-blood Se concentrations in livestock consuming Se-biofortified forage, we conclude that targeted grazing or other forage feeding strategies will allow producers to adapt to either selenate-amendment form.


Asunto(s)
Selenio , Humanos , Selenio/metabolismo , Ácido Selénico , Biofortificación/métodos , Agricultura
12.
J Prev Med Hyg ; 63(2 Suppl 3): E12-E20, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36479501

RESUMEN

The Mediterranean diet is a dietary regime derived from the one followed by the ancient civilizations of the Mediterranean region. It is characterized by many healthy constituents, among which are cereals, legumes, fruits, vegetables, olives, and white meat. Many studies suggest that this dietary regime is the key to obtaining a healthy and long life, like that of the Mediterranean peoples. Despite its popularity among health professionals, this diet is still confined to a certain geographical area of the world. Due to globalization and the modern busy lifestyle, this cultural diet is losing ground even in its home region, with more and more people embracing the so-called Western diet. An awareness of health benefits of the individual components of the Mediterranean diet will therefore draw attention from all over the world to this healthy and affordable dietary pattern, which can not only improve the overall health, but also reduce the risk of developing chronic and infectious diseases. In this regard, garlic and Mediterranean legumes present a huge repertoire of phytochemicals having both nutritive and nutraceutical properties, which therefore should be included in our daily dietary routines in moderate proportions. This narrative review aims at summarizing the principal components and health benefits of the Mediterranean diet, in particular of garlic and legumes.


Asunto(s)
Dieta Mediterránea , Fabaceae , Ajo , Humanos
13.
Nutrients ; 14(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297065

RESUMEN

The study investigates the effects of wheat biscuits supplemented with plant flours originating from legumes/seeds enriched either in L-arginine (L-arg) or branched-chain amino acids (BCAAs) on postprandial glucose response of healthy subjects. Gastrointestinal hormone and amino acid responses as well as subjective appetite sensations are also evaluated. Subjects consumed wheat-based biscuits, enriched either in L-arg (ArgB) or BCAAs (BCAAsB) or a conventional wheat biscuit (CB) or a glucose solution (GS) in an acute randomized crossover design. Responses of glucose, insulin, ghrelin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and glicentin, as well as those of L-arginine, L-leucine, L-isoleucine and L-valine, were evaluated over 180 min. Consumption of ArgB and BCAAsB elicited lower glucose iAUC compared to GS (p < 0.05). A lower iAUC for insulin was observed after consumption of BCAAsB (p < 0.05 compared to CB and ArgB), while ArgB elicited higher iAUC for GLP-1 accompanied by higher glicentin response (p < 0.05 compared to CB). BCAAsB and ArgB increased postprandial amino acid concentrations and caused stronger satiety effects compared to CB. Increasing protein content of wheat biscuits with supplementation of plant flours originating from legumes/seeds decreases postprandial glycemia and provides with healthier snack alternatives which can easily be incorporated into diet.


Asunto(s)
Hormonas Gastrointestinales , Humanos , Aminoácidos de Cadena Ramificada , Arginina , Glucemia/metabolismo , Estudios Cruzados , Ghrelina , Glicentina , Péptido 1 Similar al Glucagón , Glucosa , Voluntarios Sanos , Insulina/metabolismo , Isoleucina , Leucina , Péptido YY , Periodo Posprandial , Triticum/metabolismo , Valina
14.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296470

RESUMEN

The genus Cajanus (Family: Fabaceae) consists of approximately 37 species, and Cajanus cajan (C. cajan) is a significant member of the genus. It is a commercial legume crop widely grown in sub-tropical and semi-arid tropical areas of the world. C. cajan is well known for its folk medicinal uses to treat various disorders, such as toothache, dizziness, diabetes, stomachache, female ailments and chronic infections. These properties have been linked to the presence of several value-added nutritional and bioactive components. Different solvent extracts from C.cajan (leaves, root, stem and seeds) have been evaluated for their phytochemical and biological activities, namely antioxidant, antimicrobial, antidiabetic, neuroprotective, and anti-inflammatory effects. Taken together, and considering the prominent nutraceutical and therapeutic properties of C. cajan, this review article focuses on the important details including ethnomedicinal uses, chemical composition, biological applications and some other medicinal aspects related to C.cajan nutraceutical and pharmacological applications.


Asunto(s)
Cajanus , Fabaceae , Cajanus/química , Antioxidantes/farmacología , Solventes/química , Antiinflamatorios/farmacología , Hipoglucemiantes
15.
J Food Sci ; 87(9): 3766-3780, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35904200

RESUMEN

This study aimed to evaluate the potential of 10%, 20%, and 30% of raw (ARF) and germinated (AGF) ayocote bean flour as a partial substitute for wheat flour in breadmaking. Substitution with both ayocote bean flours modified the water absorption and development time while maintaining the dough stability. Supplemented breads had 13%, 51%, and 132% higher protein, mineral, and crude fiber content, respectively, than control bread (100% wheat). The breadmaking features, color and crumb firmness, were affected by the substitution level. Sensory analysis revealed that germination could improve the taste and smell of breads produced with ayocote bean flour. The sensory attribute scores of 10% AGF bread were comparable to those of the control bread. Supplementation reduced the in vitro protein digestibility, although the effect was less pronounced in 10% ARF and 20% AGF breads. The limiting amino acid score of supplemented breads increased up to 70%, which improved their protein digestibility-corrected amino acid scores. Supplementation with 20% or 30% of both ARF and AGF increased resistant starch values and decreased the total digestible starch of breads. Thus, the results showed that substituting wheat with ARF or AGF improves the nutritional properties of bread. However, low substitution levels should be selected to avoid a considerable decrease in physical and sensory properties. PRACTICAL APPLICATION: Substituting wheat flour with ayocote bean flour improved the nutritional value of bread. Germination of ayocote beans decreased the cooking stability of composite dough. Bread fortified with ayocote flour had high levels of essential amino acids. Bread with raw or germinated ayocote flours had high limiting amino acid scores. Composite bread had high resistant starch and low total digestible starch.


Asunto(s)
Harina , Phaseolus , Aminoácidos , Aminoácidos Esenciales , Pan/análisis , Harina/análisis , Almidón Resistente , Triticum/química , Agua
16.
Saudi J Biol Sci ; 29(4): 2626-2633, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531166

RESUMEN

A combination of mineral nutrients and plant growth regulators should be assessed to improve crop performance under various abiotic stresses. There is a need to include plant growth regulators in fertilization regime of various crops along with essential mineral nutrients, especially when they are irrigated with polluted water with higher levels of heavy metals. The performance of pea was evaluated under cadmium (Cd) stress coupled with potassium (K) and jasmonic acid (JA) supplementation. The Cd stress (50 µM) was applied to soil (sandy loam) grown pea plants as basal dose after a month of sowing. The control and stressed plants were then supplemented with K (5 M), JA (0.5 mM) and their collective application along with control as distilled water. Cd stress showed a marked reduction in growth pattern, however, the collective supplementation sufficiently improved the growth pattern of stressed peas plants as evidenced by improvement in shoot length (cm), root length (cm), number of leaves per plant, leaf area (cm2), plant fresh and dry weight (gm). Potassium application under Cd stress significantly enhanced internodal distance (cm) while the number of seeds per pod and relative water contents remained nonsignificant. The applied treatment (JA + K) under Cd stress prominently improved enzymatic activities, which were measured as nitrate reductase activity (NRA), nitrite reductase activity (NiRA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Cd stress impacted the biochemical profile by enhancing antioxidant capacity (AC), antioxidant activity (AA), total phenols (TP), while reducing total soluble protein (TSP), chlorophyll 'a', chlorophyll 'b' and carotenoids. The combined application of JA and K under Cd stress enhanced AC, AA, TP, Chl a and b, TSP and carotenoids. The results indicate that foliar application of JA and K efficiently negated the harmful effects of Cd stress on peas.

17.
Mitochondrial DNA B Resour ; 7(3): 513-514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342799

RESUMEN

The complete chloroplast genome (cpDNA) of Desmodium styracifolium, an important medicinal herb for urolithiasis treatment, was sequenced and assembled from the whole genome data. The cpDNA of D. styracifolium is 149,155 bp in length with GC content of 35.2%. The genome has a quadripartite structure that is composed of a large single-copy (LCS, 82,476 bp) and small single-copy (SSC, 18,439 bp) separated by a pair of inverted repeats (IRa and IRb, 24,120 bp each). There are 128 genes in the chloroplast genome, including 83 protein-coding genes, 8 rRNA genes and 37 tRNA genes.

18.
Plants (Basel) ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34451662

RESUMEN

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.

19.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260386

RESUMEN

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Asunto(s)
Fabaceae/fisiología , Pradera , Internacionalidad , Nitrógeno/farmacología , Fósforo/farmacología , Biodiversidad , Biomasa , Fabaceae/efectos de los fármacos , Probabilidad
20.
Mol Immunol ; 137: 84-93, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242921

RESUMEN

BACKGROUND: Prosopis juliflora is a clinically relevant allergic sensitizer worldwide and shares cross-reactivity with allergens from several tree pollen and food. The present study aims to purify and immunobiochemically characterize a major allergen from Prosopis pollen. The allergen was further investigated for its cross-reactivity with legume allergens. METHODS: Prosopis extract was fractionated by Q Sepharose and Superdex 75 gel filtration column to purify the allergen. Specific IgE against purified protein was estimated via ELISA and immunoblot. The protein was subjected to mass spectrometric analysis. Glycan characterization was performed by Schiff staining and lectin binding assay followed by deglycosylation studies. The functional activity of the purified protein was evaluated by the basophil activation test. Cross-reactivity was assessed by inhibition studies with legume extracts. RESULTS: A 35 kDa protein was purified and showed 75% IgE reactivity with the patients' sera by ELISA and immunoblot. Glycan characterization of protein demonstrated the presence of terminal glucose and mannose residues. A reduction of 40% and 27% in IgE binding was observed upon chemical and enzymatic deglycosylation of the protein, respectively. The glycoprotein allergen upregulates the expression of CD203c on basophils which was significantly reduced upon deglycosylation, signifying its biological ability to activate the effector cells. The identified protein shared significant homology with Lup an 1 from the lupine bean. Immunoblot inhibition studies of the purified allergen with legume extracts underlined high cross-reactive potential. Complete inhibition was observed with peanut and common bean, while up to 70% inhibition was demonstrated with soy, black gram, chickpea, and lima bean. CONCLUSION: A 35 kDa vicilin-like major allergen was isolated from P. juliflora. The protein possesses glycan moieties crucial for IgE binding and basophil activation. Furthermore, the purified protein shows homology with Lup an 1 and exhibits cross-reactivity with common edible legume proteins.


Asunto(s)
Alérgenos/inmunología , Reacciones Cruzadas/inmunología , Fabaceae/inmunología , Prosopis/inmunología , Proteínas de Almacenamiento de Semillas/inmunología , Antígenos de Plantas/inmunología , Arachis/inmunología , Basófilos/inmunología , Femenino , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inmunoglobulina E/inmunología , Masculino , Proteínas de Plantas/inmunología , Polen/inmunología , Pruebas Cutáneas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA