Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci ; 88(8): 3384-3397, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37350069

RESUMEN

Medium-long-medium (MLM) structured lipid (SL) as a new SL is a potential functional ingredient in food and nutraceutical products, but its composition-structure-physicochemical properties relationship has not been revealed in food industry. MLM type of medium-long chain triacylglycerol (MLCT) was synthesized from Camellia oil by combi-lipase; its physicochemical properties and composition-structure relationship were investigated in this research. The higher MLCT (67.24% ± 0.09) and MLM (52.71% ± 0.53) productivities were achieved after parameter optimization. The physicochemical characterization of SLs exhibited mild thermal property, intermediate Fourier transform infrared spectroscopy absorption intensity, and better crystal morphology. Joint characterizations identified that MLM and long-medium-long type SL were rich in 1,3-dioctanoyl-2-linoleoyl glyceride (CaLCa), 1,3-dioctanoyl-2-oleoyl glyceride (CaOCa), 1,3-dilinoleoyl-2-octanoyl glyceride (LCaL), and 1,3-dilinoleoyl-2-decanoyl glyceride (LCL) components, respectively. This is ascribed to the higher proportion of caprylic and linoleic acid in 1,3-specific enzyme. The 3D structural analysis further demonstrated that the CaLCa, CaOCa, LCaL, and LCL molecules had lower steric energy to form symmetrical structure at 1,3-position. This research provides a practical method to produce MLM-type SL from edible oils and fats in food industry.


Asunto(s)
Camellia , Aceites de Plantas , Aceites de Plantas/química , Triglicéridos/química , Grasas , Ácido Linoleico , Camellia/química , Ácidos Grasos/química , Esterificación
2.
Food Res Int ; 145: 110384, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34112430

RESUMEN

The objective of this work was to evaluate the effect of enzymatic interesterification process in blends with different proportions (w:w) of cupuassu fat and inaja oil (80:20, 70:30, 60:40, 50:50 and 40:60). The interesterification reaction was carried out at 65 °C, agitation at 150 rpm, and enzyme concentration of 5% (w/w), for 6 h. Acidity index, melting point, consistency and solid fat content of the blends were characterized before and after the interesterification process. Fatty acid content was characterized in cupuassu fat and inaja oil and, nutritional quality indexes of atherogenicity (AI) and thrombogenicity (TI) were calculated. Enzymatic interesterification promoted a decrease in acidity (<0.6%) and changes in the blends' properties, making them suitable for food product preparation. All esterified blends (cupuassu seed fat:inaja pulp oil) presented suitable consistency properties, plasticity and spreadability to be used for the preparation of functional, table and soft table types of margarine and used in food preparation such as special fats.


Asunto(s)
Ácidos Grasos , Aceites de Plantas , Esterificación
3.
Molecules ; 24(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671840

RESUMEN

N-methyl fatty hydroxamic acid (N-MFHA), which is a derivative of hydroxamic acid (HA), was synthesized from ketapang seed oil (Terminalia catappa L.). In general, HAs have wide applications due to their chelating properties and biological activities. N-MFHAs were synthesized using immobilized lipase (Lipozyme TL IM) in biphasic medium which was the ketapang seed oil dissolved in hexane and N-methylhydroxylamine dissolved in water. The products were characterized through color testing and FT-IR spectroscopy after purification. Various factors affecting the enzyme activity investigated in the study included the effect of incubation time, the amount of lipase used, and the temperature. On the basis of the results, the optimum conditions for the synthesis of N-MFHA obtained are 25 h of incubation time, a temperature of 40 °C, and a ratio of 1:100 for the amount of enzyme (g)/oil (g). At the optimum conditions of the reaction, 59.7% of the oils were converted to N-MFHA.


Asunto(s)
Biocatálisis , Ácidos Hidroxámicos/síntesis química , Lipasa/metabolismo , Aceites de Plantas/química , Semillas/química , Enzimas Inmovilizadas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo
4.
J Oleo Sci ; 68(4): 329-337, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867390

RESUMEN

Lipase-catalyzed production of palm esters was performed via alcoholysis of palm oil and oleyl alcohol in solvent and solvent-free systems using a 2 L stirred tank reactor (STR). Two immobilized lipases were tested and Lipozyme RM IM exhibited superior performance in both reaction systems. Reusability studies of the enzymes in a solvent-free system also demonstrated the high stability of Lipozyme RM IM as shown by its ability to yield more than 70% palm esters with up to 19 cycles of reusing the same enzymes. Modification of the enzyme washing process improved the stability of Lipozyme TL IM in a solvent system as demonstrated by maintaining 65% yield after 5 times of repeated enzyme use. The scale up process for both lipases was conducted in the presence of solvents by using the impeller tip speed approach. Lipozyme RM IM-catalyzed reaction in a 15 L STR produced 85.7% yield and there was a significant drop to 60.7% in the 300 L STR, whereas Lipozyme TL IM had a lower yield (65%) when the reaction volume was increased to 15 L. The low yields could be due to the accumulation of enzymes at the bottom of the vessel. Purification of palm esters via solvent-solvent extraction revealed that more than 90% of oleyl alcohol was extracted after the third extraction cycle at 150 rpm impeller speed with reduced palm esters: ethanol ratio (v/v) from 1:4 to 1:3.


Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/química , Ésteres/síntesis química , Lipasa/química , Aceite de Palma/química , Catálisis , Etanol , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Solventes
5.
Food Chem ; 141(3): 2220-8, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23870951

RESUMEN

The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands.


Asunto(s)
Dióxido de Carbono/química , Ácidos Grasos Monoinsaturados/química , Lipasa/química , Catálisis , Esterificación , Calor , Hidrogenación , Aceites de Plantas/química , Aceite de Brassica napus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA