Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618280

RESUMEN

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Asunto(s)
Catequina , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Luteolina , Simulación del Acoplamiento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
2.
Am J Cancer Res ; 14(2): 601-615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455405

RESUMEN

Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.

3.
Phytomedicine ; 127: 155391, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452690

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Asunto(s)
Bufanólidos , Neoplasias Colorrectales , Neoplasias Pulmonares , Animales , Ratones , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Bufanólidos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Transición Epitelial-Mesenquimal , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Metástasis de la Neoplasia
4.
Blood Res ; 59(1): 2, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38485822

RESUMEN

BACKGROUND: MYC/BCL2 double expression (DE) is associated with poor prognosis in patients with diffuse large B-cell lymphoma (DLBCL) receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). This study aimed to determine whether the addition of DE to the National Comprehensive Cancer Network Internal Prognostic Index (NCCN-IPI) could improve the prediction of disease progression in patients with DLBCL treated with R-CHOP. METHODS: This confirmatory prognostic factor study retrospectively recruited patients with newly diagnosed DLBCL between January 1, 2014, and January 31, 2018, at Ramathibodi Hospital (RA) and Thammasat University Hospital (TU). The follow-up period ended on July 1, 2022. Tumors expressing MYC ≥ 40% and BCL2 ≥ 50% were classified as DE. We calculated the hazard ratios (HR) for progression-free survival (PFS) from the date of diagnosis to refractory disease, relapse, or death. Discrimination of the 5-year prediction was based on Cox models using Harrell's concordance index (c-index). RESULTS: A total of 111 patients had DE (39%), NCCN-IPI (8%), and disease progression (46%). The NCCN-IPI adjusted HR of DE was 1.6 (95% confidence interval [CI]: 0.9-2.8; P = 0.117). The baseline NCCN-IPI c-index was 0.63. Adding DE to the NCCN-IPI slightly increased Harrell's concordance index (c-index) to 0.66 (P = 0.119). CONCLUSIONS: Adding DE to the NCCN-IPI may not improve the prognostic value to an acceptable level in resource-limited settings. Multiple independent confirmatory studies from a large cohort of lymphoma registries have provided additional evidence for the clinical utility of DE.

5.
J Therm Biol ; 119: 103801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38310810

RESUMEN

Skeletal muscle is a highly plastic tissue. The role of heat shock protein 72 (Hsp72) in heat stress-induced skeletal muscle hypertrophy has been well demonstrated; however, the precise mechanisms remain unclear. Essential amino acids, such as leucine, mainly mediate muscle protein synthesis. We investigated the effects of pre-heating and increased Hsp72 expression on the mechanistic target of rapamycin (mTOR) signaling and protein synthesis following leucine administration in rat gastrocnemius muscle. To ensure increased Hsp72 expression in both the red and white portions of the muscle, one leg of male Wistar rats (10-week-old, n = 23) was heat-stressed in 43 °C water for 30 min twice at a 48-h-interval (heat-stressed leg, HS leg). The contralateral leg served as a non-heated internal control (CT leg). After the recovery period (48 h), rats were divided into the pre-administration or oral leucine administration groups. We harvested the gastrocnemius muscle (red and white parts) prior to administration and 30 and 90 min after leucine treatment (n = 7-8 per group) and intramuscular signaling responses to leucine ingestion were determined using western blotting. Heat stress significantly upregulated the expression of Hsp72 and was not altered by leucine administration. Although the phosphorylation levels of mTOR/S6K1 and ERK were similar regardless of heating, 4E-BP1 was less phosphorylated in the HS legs than the CT legs after leucine administration in the red portion of the muscles (P < 0.05). Moreover, c-Myc expression differed significantly after leucine administration in both the red and white portions of the muscles. Our findings indicate that following oral leucine administration, pre-heating partially blunted the muscle protein synthesis signaling response in the rat gastrocnemius muscle.


Asunto(s)
Calefacción , Transducción de Señal , Ratas , Masculino , Animales , Leucina/farmacología , Ratas Sprague-Dawley , Ratas Wistar , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacología , Suplementos Dietéticos
6.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37741055

RESUMEN

Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.


Asunto(s)
Acetatos , Ginkgo biloba , Ginkgólidos , Oxilipinas , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Ginkgólidos/metabolismo , Extractos Vegetales/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo
7.
In Vitro Cell Dev Biol Anim ; 59(10): 739-746, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38038884

RESUMEN

Epigallocatechin gallate (EGCG), a bioactive component in tea, displays broad anti-cancer effects. Our study was designed to evaluate the anti-cancer effects of EGCG on ovarian cancer and explored the underlying molecular mechanisms. To evaluate the in vitro inhibitory effects of EGCG against ovarian cancer, MTT assay, colony formation assay, apoptosis assay, and wound healing assay, were performed. Besides, the inhibitory effects of EGCG on tumor growth in the xenograft animal model were evaluated by measuring tumor volume and tumor weight. Moreover, Western blotting and qPCR were used to evaluate the levels of target genes and proteins. Treatment with EGCG inhibited cell migration and cell survival, and promoted cell apoptosis in A2780 and SKOV3 cells. Interestingly, treatment with EGCG inhibited the tumor growth in the xenograft animal model. The mechanistic study revealed that treatment with EGCG induced the activation of FOXO3A and suppressed the expression of c-Myc both in vitro and in vivo. Our findings demonstrate that EGCG suppress ovarian cancer cell growth, which may be due to its regulation on FOXO3A and c-Myc.


Asunto(s)
Proteína Forkhead Box O3 , Ácido Gálico , Neoplasias Ováricas , , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Apoptosis/efectos de los fármacos , Humanos , Línea Celular Tumoral , Femenino , Animales , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Supervivencia Celular , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Proteína Forkhead Box O3/metabolismo , Xenoinjertos , Té/química
8.
Phytomedicine ; 121: 155045, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742526

RESUMEN

BACKGROUND: Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE: The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS: Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS: ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION: These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.


Asunto(s)
Neoplasias Gástricas , Ratones , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Glucosa/metabolismo , Ácido Láctico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
9.
Medicina (Kaunas) ; 59(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37629666

RESUMEN

Background and Objectives: Natural products have proven to be a valuable source for the discovery of new candidate drugs for cancer treatment. This study aims to investigate the potential therapeutic effects of "Kerra™", a natural extract derived from a mixture of nine medicinal plants mentioned in the ancient Thai scripture named the Takxila Scripture, on HCT116 cells. Materials and Methods: In this study, the effect of the Kerra™ extract on cancer cells was assessed through cell viability assays. Apoptotic activity was evaluated by examining the apoptosis characteristic features. A proteomics analysis was conducted to identify proteins and pathways associated with the extract's mechanism of action. The expression levels of apoptotic protein markers were measured to validate the extract's efficacy. Results: The Kerra™ extract demonstrated a dose-dependent inhibitory effect on the cells, with higher concentrations leading to decreased cell viability. Treatment with the extract for 72 h induced characteristic features of early and late apoptosis, as well as cell death. An LC-MS/MS analysis identified a total of 3406 proteins. The pathway analysis revealed that the Kerra™ extract stimulated apoptosis and cell death in colorectal cancer cell lines and suppressed cell proliferation in adenocarcinoma cell lines through the EIF2 signaling pathway. Upstream regulatory proteins, including cyclin-dependent kinase inhibitor 1A (CDKN1A) and MYC proto-oncogene, bHLH transcription factor (MYC), were identified. The expressions of caspase-8 and caspase-9 were significantly elevated by the Kerra™ extract compared to the chemotherapy drug Doxorubicin (Dox). Conclusions: These findings provide strong evidence for the ability of the Kerra™ extract to induce apoptosis in HCT116 colon cancer cells. The extract's efficacy was demonstrated by its dose-dependent inhibitory effect, induction of apoptotic activity, and modulation of key proteins involved in cell death and proliferation pathways. This study highlights the potential of Kerra™ as a promising therapeutic agent in cancer treatment.


Asunto(s)
Antineoplásicos , Células HCT116 , Extractos Vegetales , Proteómica , Cromatografía Liquida , Células HCT116/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Tailandia , Medicina Tradicional
10.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570631

RESUMEN

The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study was to investigate the molecular modes of action of a 1,2,4-oxadiazole derivative (ZINC15675948) as a c-MYC inhibitor. ZINC15675948 displayed profound cytotoxicity at the nanomolar range in CCRF-CEM leukemia and MDA-MB-231-pcDNA3 breast cancer cells. Multidrug-resistant sublines thereof (i.e., CEM/ADR5000 and MDA-MB-231-BCRP) were moderately cross-resistant to this compound (<10-fold). Molecular docking and microscale thermophoresis revealed a strong binding of ZINC15675948 to c-MYC by interacting close to the c-MYC/MAX interface. A c-MYC reporter assay demonstrated that ZINC15675948 inhibited c-MYC activity. Western blotting and qRT-PCR showed that c-MYC expression was downregulated by ZINC15675948. Applying microarray hybridization and signaling pathway analyses, ZINC15675948 affected signaling routes downstream of c-MYC in both leukemia and breast cancer cells as demonstrated by the induction of DNA damage using single cell gel electrophoresis (alkaline comet assay) and induction of apoptosis using flow cytometry. ZINC15675948 also caused G2/M phase and S phase arrest in CCRF-CEM cells and MDA-MB-231-pcDNA3 cells, respectively, accompanied by the downregulation of CDK1 and p-CDK2 expression using western blotting. Autophagy induction was observed in CCRF-CEM cells but not MDA-MB-231-pcDNA3 cells. Furthermore, microarray-based mRNA expression profiling indicated that ZINC15675948 may target c-MYC-regulated ubiquitination, since the novel ubiquitin ligase (ELL2) was upregulated in the absence of c-MYC expression. We propose that ZINC15675948 is a promising natural product-derived compound targeting c-MYC in c-MYC-driven cancers through DNA damage, cell cycle arrest, and apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Leucemia , Humanos , Femenino , Extractos Vegetales/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Proteínas de Neoplasias , Apoptosis , Leucemia/tratamiento farmacológico , Factores de Elongación Transcripcional
11.
Phytother Res ; 37(10): 4473-4487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37288731

RESUMEN

Though Morusin is known to induce apoptotic, antiprolifertaive, and autophagic effects through several signaling pathways, the underlying molecular mechanisms of Morusin still remain unclear until now. To elucidate antitumor mechanism of Morusin, cytotoxicity assay, cell cycle analysis, Western blotting, TUNEL assay, RNA interference, immunofluorescense, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor study were applied in this study. Morusin enhanced cytotoxicity, increased the number of TUNEL positive cells, sub-G1 population and induced the cleavages of PARP and caspase3, attenuated the expression of HK2, PKM2, LDH, c-Myc, and Forkhead Box M1 (FOXM1) along with the reduction of glucose, lactate, and ATP in DU145 and PC3 cells. Furthermore, Morusin disrupted the binding of c-Myc and FOXM1 in PC-3 cells, which was supported by String and cBioportal database. Notably, Morusin induced c-Myc degradation mediated by FBW7 and suppressed c-Myc stability in PC3 cells exposed to MG132 and cycloheximide. Also, Morusin generated ROS, while NAC disrupted the capacity of Morusin to reduce the expression of FOXM1, c-Myc, pro-PARP, and pro-caspase3 in PC-3 cells. Taken together, these findings provide scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis plays a critical role in Morusin induced apoptotic and anti-Warburg effect in prostate cancer cells. Our findings support scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis is critically involved in apoptotic and anti-Warburg effect of Morusin in prostate cancer cells.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Proliferación Celular , Proteína Forkhead Box M1/metabolismo
12.
Phytomedicine ; 116: 154877, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267692

RESUMEN

BACKGROUND: The flavonoid galangin (3,5,7-trihydroxyflavone) is derived from the root of Alpinia officinarum Hance, an edible and medicinal herb. Galangin has many biological activities, such as anti-inflammatory, anti-microbial, anti-viral, anti-obesogenic, and anti-oxidant effects. However, the anti-tumor mechanism of galangin remains unclear. PURPOSE: To elucidate the anti-tumor mechanisms of galangin in vitro and in vivo. METHODS: MTT, western blotting, immunoprecipitation, RT-PCR, and immunofluorescence assays were used to assess the mechanism of galangin inhibiting PD-L1 expression. The effect of galangin on T cell activity was analyzed in Hep3B/T cell co-cultures. Colony formation, EdU, migration, and invasion assays were performed to explore the effect of galangin on cancer progression and metastasis. Anti-tumor effects of galangin were investigated in a xenograft model. RESULTS: Galangin inhibited PD-L1 expression dose-dependently, which plays a major role in tumor progression. Moreover, galangin blocked STAT3 activation through the JAK1/JAK2/Src signaling pathway and Myc activation through the Ras/RAF/MEK/ERK signaling pathway. Galangin reduced PD-L1 expression by suppressing STAT3 and Myc cooperatively. Galangin increased the killing effect of T cells on tumor cells in Hep3B/T cell co-cultures. Moreover, galangin inhibited tumor cell proliferation, migration, and invasion through PD-L1. In vivo experiments showed that galangin suppressed tumor growth. CONCLUSION: Galangin enhances T-cell activity and inhibits tumor cell proliferation, migration, and invasion through PD-L1. The current study emphasizes the anti-tumor properties of galangin, offering new insights into the development of tumor therapeutics targeting PD-L1.


Asunto(s)
Antígeno B7-H1 , Linfocitos T , Humanos , Antígeno B7-H1/metabolismo , Ligandos , Línea Celular Tumoral , Linfocitos T/metabolismo , Flavonoides/farmacología , Apoptosis , Proliferación Celular , Factor de Transcripción STAT3/metabolismo
13.
Mol Biol Rep ; 50(8): 6627-6641, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358765

RESUMEN

BACKGROUND: Glutamine metabolism is critical for development of hepatocellular carcinoma (HCC), which makes it a novel promising treatment target. However, clinical evidence suggested glutamine withdrawal therapy does not achieved the desired tumor suppression. Therefore, it is valuable to investigate the survival mechanisms of tumors with glutamine deprivation. METHODS: The HCC cells were cultured in glutamine-free medium or supplemented with glutamine metabolites or ferroptosis inhibitors. The parameters related to ferroptosis and the activity of GSH synthesis-related enzymes of the HCC cells were detected by corresponding kits. The expressions of glutamate oxaloacetate transaminase 1 (GOT1), c-Myc and Nrf2 were detected by western blot and qRT-PCR. The chromatin immunoprecipitation and luciferase reporter assays were performed to investigate the correlation between c-Myc and GOT1. The siRNAs of c-Myc and GOT1 were used to explore their roles in GSH (GSH) synthesis and ferroptosis in vitro and in vivo. RESULTS: Glutamine deprivation-induced ferroptosis did not completely inhibit HCC cells proliferation. Glutamine deprivation activated the expression of c-Myc, which promoted the transcription of GOT1 and Nrf2, consequently maintaining the GSH synthesis and inhibiting ferroptosis. In addition, combined inhibition of GOT1 with glutamine deprivation could result in better inhibition of HCC in vitro and in vivo. CONCLUSIONS: In our work, the results indicate that GOT1 induced by c-Myc may play an important role in combating ferroptosis due to glutamine deprivation, making it a significant target in glutamine withdrawal therapy. This study provides a theoretical foundation for the clinical targeted therapy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Citoplasmática/uso terapéutico , Neoplasias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Glutamina/farmacología , Glutamina/metabolismo , Línea Celular Tumoral
14.
J Ethnopharmacol ; 315: 116625, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37236380

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiedu-Quyu-Ziyin Fang (JQZF) is a new herbal formula improved based on "Sheng Ma Bie Jia Tang" in the Golden Chamber, has been proved to be effective in the treatment of SLE. The ability of JQZF to prevent lymphocyte growth and survival has been demonstrated in earlier investigations. However, the specific mechanism of JQZF on SLE has not been fully investigated. AIM OF THE STUDY: To reveal the potential mechanisms of JQZF inhibiting B cell proliferation and activation in MRL/lpr mice. MATERIALS AND METHODS: MRL/lpr mice were treated with low-dose, high-dose JQZF and normal saline for 6 weeks. The effect of JQZF on disease improvement in MRL/lpr mice was studied using enzyme-linked immunosorbent assay (ELISA), histopathological staining, serum biochemical parameters and urinary protein levels. The changes of B lymphocyte subsets in the spleen were analyzed by flow cytometry. The contents of ATP and PA in B lymphocytes from the spleens of mice were determined by ATP content assay kit and PA assay kit. Raji cells (a B lymphocyte line) were selected as the cell model in vitro. The effects of JQZF on the proliferation and apoptosis of B cells were detected by flow cytometry and CCK8. The effect of JQZF on the AKT/mTOR/c-Myc signaling pathway in B cells were detected via western blot. RESULTS: JQZF, especially at high dose, significantly improved the disease development of MRL/lpr mice. Flow cytometry results showed that JQZF affected the proliferation and activation of B cells. In addition, JQZF inhibited the production of ATP and PA in B lymphocytes. In vitro cell experiments further confirmed that JQZF can inhibit Raji proliferation and promote cell apoptosis through AKT/mTOR/c-Myc signaling pathway. CONCLUSION: JQZF may affect the proliferation and activation of B cells by inhibiting the AKT/mTOR/c-Myc signaling pathway.


Asunto(s)
Lupus Eritematoso Sistémico , Transducción de Señal , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/farmacología , Ratones Endogámicos MRL lpr , Linfocitos B , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Adenosina Trifosfato/metabolismo
15.
Plant Sci ; 333: 111734, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207819

RESUMEN

The stamen, as the male reproductive organ of flowering plants, plays a critical role in completing the life cycle of plants. MYC transcription factors are members of the bHLH IIIE subgroup and participate in a number of plant biological processes. In recent decades, a number of studies have confirmed that MYC transcription factors actively participate in the regulation of stamen development and have a critical impact on plant fertility. In this review, we summarized how MYC transcription factors play a role in regulating secondary thickening of the anther endothecium, the development and degradation of the tapetum, stomatal differentiation, and the dehydration of the anther epidermis. With regard to anther physiological metabolism, MYC transcription factors control dehydrin synthesis, ion and water transport, and carbohydrate metabolism to influence pollen viability. Additionally, MYCs participate in the JA signal transduction pathway, where they directly or indirectly control the development of stamens through the ET-JA, GA-JA, and ABA-JA pathways. By identifying the functions of MYCs during plant stamen development, it will help us to obtain a more comprehensive understanding not only on the molecular functions of this TF family but also the mechanisms underlying stamen development.


Asunto(s)
Flores , Plantas , Proteínas Proto-Oncogénicas c-myc , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Polen , Factores de Transcripción/metabolismo
16.
EMBO Mol Med ; 15(6): e16910, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158102

RESUMEN

MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Línea Celular Tumoral , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología , Linfoma de Células B/tratamiento farmacológico , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-myc/metabolismo
17.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047679

RESUMEN

As key regulators of the Jasmonates (JAs) signal transduction pathway, JAZ protein, and MYC transcription factors are imperative for plant response to external environmental changes, growth, and development. In this study, 18 StJAZs and 12 StMYCs were identified in potatoes. Their chromosomal position, phylogenetic development, gene structure, and promoter cis-acting parts of the StJAZ genes were analyzed. In addition, Protein-Protein Interaction (PPI) network analysis of StJAZ and StMYC gene families and yeast two-hybrid assay demonstrated that five StMYCs can interact with 16 StJAZs, which provides new insights into the operation mechanism of StJAZs and StMYCs in JA signal response. Moreover, we explored the expression profiles of StJAZs and StMYCs genes in different tissues and during abiotic stresses by RNA-seq data. Based on the PPI network and transcriptome data, the genes StJAZ11, StJAZ16, and StMYC6 were chosen for further qRT-PCR study under salt or mannitol treatment. Under mannitol-induced drought or salinity treatment, the expression patterns of StMYC6, StJAZ11, and StJAZ16 were different, indicating that the JAZ protein and MYC transcription factor may be engaged in the response of potatoes to abiotic stress, which opened up a new research direction for the genetic improvement of potatoes in response to environmental stress.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , RNA-Seq , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Gut Microbes ; 15(1): 2186114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941257

RESUMEN

Probiotic roles of Clostridium butyricum (C.B) are involved in regulating disease and cancers, yet the mechanistic basis for these regulatory roles remains largely unknown. Here, we demonstrate that C.B reprograms the proliferation, migration, stemness, and tumor growth in CRC by regulating pivotal signal molecules including MYC. Destabilization of MYC by C.B supplementation suppresses cancer cell proliferation/metastasis, sensitizes 5-FU treatment, and boosts responsiveness of anti-PD1 therapy. MYC is a transcriptional regulator of Thymidylate synthase (TYMS), a key target of the 5-FU. Also MYC is known to impact on PD-1 expression. Mechanistically, C.B treatment of CRC cells results in MYC degradation by enhancing proteasome-mediated ubiquitination, thereby mitigating MYC-mediated 5-FU resistance and boosting anti-PD1 immunotherapeutic efficacy. Together, our findings uncover previously unappreciated links between C.B and CRC cell signaling, providing insight into the tumorigenesis modulating mechanisms of C.B in boosting chemo/immune therapies.


Asunto(s)
Clostridium butyricum , Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Proliferación Celular , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico
19.
BMC Plant Biol ; 23(1): 63, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36721100

RESUMEN

BACKGROUND: A. annua (also named Artemisia annua, sweet wormwood) is the main source of the anti-malarial drug artemisinin, which is synthesised and stored in its trichomes. Members of the basic Helix-Loop-Helix (bHLH) family of transcription factors (TFs) have been implicated in artemisinin biosynthesis in A. annua and in trichome development in other plant species. RESULTS: Here, we have systematically identified and characterised 226 putative bHLH TFs in A. annua. All of the proteins contain a HLH domain, 213 of which also contain the basic motif that mediates DNA binding of HLH dimers. Of these, 22 also contained a Myc domain that permits dimerisation with other families of TFs; only two proteins lacking the basic motif contained a Myc domain. Highly conserved GO annotations reflected the transcriptional regulatory role of the identified TFs, and suggested conserved roles in biological processes such as iron homeostasis, and guard cell and endosperm development. Expression analysis revealed that three genes (AabHLH80, AabHLH96, and AaMyc-bHLH3) exhibited spatiotemporal expression patterns similar to genes encoding key enzymes in artemisinin synthesis. CONCLUSIONS: This comprehensive analysis of bHLH TFs provides a new resource to direct further analysis into key molecular mechanisms underlying and regulating artemisinin biosynthesis and trichome development, as well as other biological processes, in the key medicinal plant A. annua.


Asunto(s)
Artemisia annua , Artemisininas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Artemisia annua/genética , Factores de Transcripción/genética , Secuencias Hélice-Asa-Hélice
20.
Phytomedicine ; 111: 154664, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682301

RESUMEN

BACKGROUND: As a leading cause of long-term disability, ischemic stroke urgently needs further research and drug development. Pushen capsule (Pushen) has been commonly applied in clinical treatment for relieving headaches, dizziness, and numbness. However, the effects of Pushen on ischemic stroke have not been revealed yet. PURPOSE: To assess the efficiency of Pushen in ischemic stroke and identify its potential therapeutic targets and active ingredients for treating ischemic stroke. STUDY DESIGN AND METHODS: Behavioural experiments, Triphenyltetrazolium chloride (TTC) staining, Magnetic resonance imaging (MRI), and immunofluorescence staining were performed to examine the efficiency of Pushen in stroke model mice. The potential mechanism and active ingredients of Pushen were assessed by transcriptome, 16S rDNA sequencing, metabonomics, and network pharmacology. Finally, the targets were validated by RT-PCR, chromatin immunoprecipitation (ChIP), ELISA, and molecular docking methods. RESULTS: Pushen had several effects on stroke model mice, including reducing the infarct volume, improving the blood‒brain barrier (BBB), and promoting functional restoration. Furthermore, the network pharmacology, LC-MS/MS, and molecular docking results revealed that tricin, quercetin, luteolin, kaempferol, and physcion were identified as the key active ingredients in Pushen that treated ischemic stroke. Mechanistically, these key ingredients could bind with the transcription factor c-Myc and thereby regulate the expression of Adora2a, Drd2, and Ppp1r1b, which are enriched in the cAMP signaling pathway. Additionally, Pushen improved the gut microbiota dysbiosis and reduced inosine levels in feces and serum, thereby reducing Adora2a expression in the brain. CONCLUSIONS: Our study confirmed that Pushen was effective for treating ischemic stroke and has promising clinical applications.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Accidente Cerebrovascular/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA