Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.664
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Artículo en Inglés | LILACS | ID: biblio-1538056

RESUMEN

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Asunto(s)
Animales , Ratas , Extractos Vegetales/administración & dosificación , Croton/química , Inflamación/tratamiento farmacológico , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Fenoles/análisis , Extractos Vegetales/química , Hojas de la Planta , Modelos Animales de Enfermedad , Antiinflamatorios/química , Antioxidantes/química
2.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
3.
Heliyon ; 10(7): e28755, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586372

RESUMEN

Fish mint, Houttuynia cordata Thunb. (HCT) is an edible vegetable that has also been used in traditional folk medicines. As both a medicinal herb and a dietary source, HCT has been clinically proven to be a pivotal ingredient in formulas administered to alleviate COVID-19 symptoms. With the increasing market demand for imported materials, ensuring the quality consistency of HCT becomes a significant concern. In this study, the growing time for hydroponically-cultivated HCT with seaweed extract and amino acids added (HCTW) reduced by half compared to conventional soil-cultivated HCT (HCTS). Key quantified components in HCTW, flavonoid glycosides and caffeoylquinic acid derivatives, exhibited a 143% increase over HCTS. These crucial constituents were responsible for possessing antioxidant activity (IC50 < 25 µg/mL) and anti-nitrite oxide production (IC50 < 20 µg/mL). An economically-designed hydroponic system with appropriate additives is proposed to replace HCTS with improvements of growth time, overall production yields, and bioactive qualities.

4.
BMC Complement Med Ther ; 24(1): 145, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575994

RESUMEN

BACKGROUND: Ginger is a common aromatic vegetable with a wide range of functional ingredients and considerable medicinal and nutritional properties. Numerous studies have shown that ginger and its active ingredients have suppressive effects on manifold tumours, including ovarian cancer (OC). However, the molecular mechanism by which ginger inhibits OC is not clear. The aim of this study was to investigate the function and mechanism of ginger in OC. METHODS: The estimation of n6-methyladenosine (m6A) levels was performed using the m6A RNA Methylation Quantification Kit, and RT-qPCR was used to determine the expression of m6A-related genes and proteins. The m6A methylationome was detected by MeRIP-seq, following analysis of the data. Differential methylation of genes was assessed utilizing RT-qPCR and Western Blotting. The effect of ginger on SKOV3 invasion in ovarian cancer cells was investigated using the wound healing assay and transwell assays. RESULTS: Ginger significantly reduced the m6A level of OC cells SKOV3. The 3'UTR region is the major site of modification for m6A methylation, and its key molecular activities include Cell Adhesion Molecules, according to meRIP-seq results. Moreover, it was observed that Ginger aids significantly in downregulating the CLDN7, CLDN11 mRNA, and protein expression. The results of wound healing assay and transwell assay showed that ginger significantly inhibited the invasion of OC cells SKOV3. CONCLUSIONS: Ginger inhibits ovarian cancer cells' SKOV3 invasion by regulating m6A methylation through CLDN7, CLDN11, and CD274.


Asunto(s)
Neoplasias Ováricas , Zingiber officinale , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Metilación de ARN , Antígeno B7-H1 , Claudinas
5.
Nat Prod Res ; : 1-28, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586947

RESUMEN

Natural products (NPs) are endless sources of compounds for fighting against several pathologies. Many dysfunctions, including cardiovascular disorders, such as cardiac arrhythmias have their modes of action regulation of the concentration of electrolytes inside and outside the cell targeting ion channels. Here, we highlight plant extracts and secondary metabolites' effects on the treatment of related cardiac pathologies on hERG, Nav, and Cav of cardiomyocytes. The natural product's pharmacology of expressed receptors like alpha-adrenergic receptors causes an influx of Ca2+ ions through receptor-operated Ca2+ ion channels. We also examine the NPs associated with cardiac contractions such as myocardial contractility by reducing the L-type calcium current and decreasing the intracellular calcium transient, inhibiting the K+ induced contractions, decreasing amplitude of myocyte shortening and showed negative ionotropic and chronotropic effects due to decreasing cytosolic Ca2+. We examine whether the NPs block potassium channels, particular the hERG channel and regulatory effects on Nav1.7.

6.
Appl Environ Microbiol ; 90(5): e0028824, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651928

RESUMEN

In many frankia, the ability to nodulate host plants (Nod+) and fix nitrogen (Fix+) is a common strategy. However, some frankia within the Pseudofrankia genus lack one or two of these traits. This phenomenon has been consistently observed across various actinorhizal nodule isolates, displaying Nod- and/or Fix- phenotypes. Yet, the mechanisms supporting the colonization and persistence of these inefficient frankia within nodules, both with and without symbiotic strains (Nod+/Fix+), remain unclear. It is also uncertain whether these associations burden or benefit host plants. This study delves into the ecological interactions between Parafrankia EUN1f and Pseudofrankia inefficax EuI1c, isolated from Elaeagnus umbellata nodules. EUN1f (Nod+/Fix+) and EuI1c (Nod+/Fix-) display contrasting symbiotic traits. While the prediction suggests a competitive scenario, the absence of direct interaction evidence implies that the competitive advantage of EUN1f and EuI1c is likely contingent on contextual factors such as substrate availability and the specific nature of stressors in their respective habitats. In co-culture, EUN1f outperforms EuI1c, especially under specific conditions, driven by its nitrogenase activity. Iron-depleted conditions favor EUN1f, emphasizing iron's role in microbial competition. Both strains benefit from host root exudates in pure culture, but EUN1f dominates in co-culture, enhancing its competitive traits. Nodulation experiments show that host plant preferences align with inoculum strain abundance under nitrogen-depleted conditions, while consistently favoring EUN1f in nitrogen-supplied media. This study unveils competitive dynamics and niche exclusion between EUN1f and EuI1c, suggesting that host plant may penalize less effective strains and even all strains. These findings highlight the complex interplay between strain competition and host selective pressure, warranting further research into the underlying mechanisms shaping plant-microbe-microbe interactions in diverse ecosystems. IMPORTANCE: While Pseudofrankia strains typically lack the common traits of ability to nodulate the host plant (Nod-) and/or fix nitrogen (Fix-), they are still recovered from actinorhizal nodules. The enigmatic question of how and why these unconventional strains establish themselves within nodule tissue, thriving either alongside symbiotic strains (Nod+/Fix+) or independently, while considering potential metabolic costs to the host plant, remains a perplexing puzzle. This study endeavors to unravel the competitive dynamics between Pseudofrankia inefficax strain EuI1c (Nod+/Fix-) and Parafrankia strain EU1Nf (Nod+/Fix+) through a comprehensive exploration of genomic data and empirical modeling, conducted both in controlled laboratory settings and within the host plant environment.


Asunto(s)
Elaeagnaceae , Frankia , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas , Simbiosis , Frankia/genética , Frankia/fisiología , Frankia/metabolismo , Elaeagnaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Cocultivo , Genoma Bacteriano
7.
Int J Biol Macromol ; 267(Pt 1): 131539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608994

RESUMEN

Sustainable strategies to improve the water resistance of cellulose paper are actively sought. In this work, polymeric microspheres (PMs), prepared through emulsion polymerization of cellulose nanofibers stabilized rubber seed oil-derived monomer, were investigated as coatings on corrugated medium paper (CMP). After infiltrating porous paper with PMs, the water-resistant corrugated papers (WRCPn) with enhanced mechanical properties were obtained. When 30 wt% PMs were introduced, WRCP30 turned out to be highly compacted with an increased water contact angle of 106.3° and a low water vapor transmission rate of 81 g/(m2 d) at 23 °C. Meanwhile, the tensile strength of WRCP30 increased to 22.2 MPa, a 4-fold increase from CMP. When tested in a well-hydrated state, 71% of its mechanical strength in the dry state was maintained. Even with a low content of 10 wt% PMs, WRCP10 also exhibited stable tensile strength and water wettability during the cyclic soaking-drying process. Thus, the plant oil based sustainable emulsion polymers provide a convenient route for enhancing the overall performance of cellulose paper.


Asunto(s)
Celulosa , Microesferas , Aceites de Plantas , Resistencia a la Tracción , Agua , Celulosa/química , Agua/química , Aceites de Plantas/química , Papel , Humectabilidad , Polímeros/química , Emulsiones/química , Porosidad , Nanofibras/química
8.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662176

RESUMEN

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Asunto(s)
Conservación de los Recursos Naturales , Germinación , Plantas Medicinales , Semillas , Swertia , Plantas Medicinales/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Swertia/fisiología , India , Plantones/crecimiento & desarrollo , Ecosistema , Latencia en las Plantas
9.
Poult Sci ; 103(6): 103668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631232

RESUMEN

Plant extracts are increasingly recognized as potential prophylactic agents in poultry production due to their diverse bioactive properties. This study investigated the phytochemical and biological properties of Libidibia ferrea (L. ferrea), a plant species native to the Caatinga region of northeastern Brazil. The aim of this study was to identify secondary metabolites and to demonstrate the antimicrobial, antioxidant and protective effects of the plant extract. Three extracts were produced: EHMV, a hydroalcoholic extract from the maceration of pods, and EEMC and EEMV ethanolic extracts from the maceration of peels and pods, respectively, from L. ferrea. High-performance liquid chromatography (HPLC-MS/MS) and atomic absorption spectroscopy (AAS) were used to characterize the metabolites and metals. The antimicrobial activity against Salmonella Galinarum (SG), Salmonella pullorum (SP), Salmonella Heidelberg (SH) and Avian pathogenic Escherichia coli (APEC) was evaluated alone and in combination with probiotic bacteria (Bacillus velenzensis) using agar diffusion and the bactericidal minimum concentration (CBM). The antioxidant potential of the extracts was evaluated in 5 in vitro assays and 6 assays in 3t3 cells. The toxicity of EHMV was tested, and its ability to combat SP infection was demonstrated using a chicken embryo model. The results showed that EHMV exhibited significant antimicrobial activity. The combination of EHMV with BV had synergistic effects, increased antimicrobial activity and induced bacterial sporulation. Composition analysis revealed the presence of 8 compounds, including tannins and phenolic compounds. In vitro antioxidant tests demonstrated that total antioxidant capacity(TAC) activity was increased, and the extract had strong reducing power and notable metal chelating effects. Analysis of 3T3 cells confirmed the protective effect of EHMV against oxidative stress. Toxicity assessments in chicken embryos confirmed the safety of EHMV and its protective effect against SP-induced mortality. EHMV from L. ferrea is rich in proteins and contains essential metabolites that contribute to its antimicrobial and antioxidant properties. When associated with probiotic bacteria such as B. velezensis, this extract increases the inhibition of SH, SG, SP, and APE. The nontoxic nature of EHMV and its protective effects on chicken embryos make it a potential supplement for poultry.


Asunto(s)
Antioxidantes , Extractos Vegetales , Animales , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Pollos , Embrión de Pollo , Brasil , Salmonella/efectos de los fármacos , Salmonella/fisiología , Ratones , Escherichia coli/efectos de los fármacos
10.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 264-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599847

RESUMEN

Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.


Asunto(s)
Brassicaceae , Solanaceae , Humanos , Brassicaceae/genética , Solanaceae/genética , Plantas , Polen , Flores , Proteínas de Plantas
11.
Methods Mol Biol ; 2798: 213-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587746

RESUMEN

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Catalasa , Electroforesis en Gel de Poliacrilamida Nativa , Espectrofotometría
12.
Chem Biodivers ; 21(6): e202400160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38655704

RESUMEN

Baccharoides anthelmintica (L.) Moench is a popular medicinal plant with a long history of use in several traditional remedies to cure a variety of diseases including; its effect on the central nervous system, gastrointestinal tract, metabolism, kidneys, gynecology, skin diseases, and general health. The present review aims to provide the latest, organized information on toxicological, pharmacological, phytochemical, and ethnomedicinal applications of Baccharoides anthelmintica. For this; several well-known searchable websites (search engines) like; Web of Science, Google Scholar, Scopus-Elsevier, Taylor & Francis, Springer, and DOAJ, were used to empirically investigate the knowledge of this useful medicinal plant. Based on previous studies, the pharmacological action of B. anthelmintica is due to various secondary metabolites including alkaloids, terpenoids, lignans, steroids, and other phytoconstituents. Hence, the present study recorded 225 phytochemicals obtained from different parts of the plant, where the steroids and derivatives (48), terpenes and sesquiterpenes (46), flavonoids and derivatives (41), fatty acids and derivatives (40), phenolic acids (12), triterpenes (11), chalcones (06), diterpenes (01) and miscellaneous (20) were reported. The present review also covered the pharmacological importance, including antioxidant, antimicrobial, antiparasitic, antidiabetic, hypolipidemic action, liver disease, anticancer potential, anti-HIV, antiosteoporotic action, antitoxic action, skin disorder, wound healing and immunomodulatory activity, systemic infection, and treatment of neurodegenerative diseases etc. The review concluded that B. anthelmintica has several pharmacological activities, which were due to the presence of secondary metabolites present in it, and thus indicates the importance of medicinal value of this plant. Hence, B. anthelmintica may be a good source for developing a lead molecule in the process of new drug discovery and development. More study is required to determine the pharmacokinetics, mechanism of action, long-term toxicology testing, safe dosage, and possible interactions with other herbs/drugs.


Asunto(s)
Medicina Tradicional , Fitoquímicos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Humanos , Plantas Medicinales/química , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación
13.
Biomed Pharmacother ; 174: 116543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608523

RESUMEN

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.


Asunto(s)
Exosomas , Nanopartículas , Plantas , Animales , Humanos , Sistemas de Liberación de Medicamentos/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Exosomas/metabolismo , Nanopartículas/química , Plantas/química , Plantas/metabolismo
14.
Med Oncol ; 41(5): 115, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622289

RESUMEN

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.


Asunto(s)
Bacopa , Carcinoma Ductal , Neoplasias , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Histonas , Citocinas
15.
Sci Rep ; 14(1): 8679, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622223

RESUMEN

Roots are crucial in plant adaptation through the exudation of various compounds which are influenced and modified by environmental factors. Buckwheat root exudate and root system response to neighbouring plants (buckwheat or redroot pigweed) and how these exudates affect redroot pigweed was investigated. Characterising root exudates in plant-plant interactions presents challenges, therefore a split-root system which enabled the application of differential treatments to parts of a single root system and non-destructive sampling was developed. Non-targeted metabolome profiling revealed that neighbour presence and identity induces systemic changes. Buckwheat and redroot pigweed neighbour presence upregulated 64 and 46 metabolites, respectively, with an overlap of only 7 metabolites. Root morphology analysis showed that, while the presence of redroot pigweed decreased the number of root tips in buckwheat, buckwheat decreased total root length and volume, surface area, number of root tips, and forks of redroot pigweed. Treatment with exudates (from the roots of buckwheat and redroot pigweed closely interacting) on redroot pigweed decreased the total root length and number of forks of redroot pigweed seedlings when compared to controls. These findings provide understanding of how plants modify their root exudate composition in the presence of neighbours and how this impacts each other's root systems.


Asunto(s)
Amaranthus , Productos Biológicos , Fagopyrum , Metaboloma , Meristema , Plantones , Productos Biológicos/metabolismo , Raíces de Plantas/metabolismo
16.
Environ Sci Pollut Res Int ; 31(20): 28847-28855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561538

RESUMEN

The increasing demands for resources driven by the global population necessitate exploring sustainable alternatives for affordable animal protein over the use of traditional protein sources. Insects, with their high protein content, offer a promising solution, especially when reared on agricultural post-distillation residues for enhanced sustainability and cost-effectiveness. We assessed the development of Zophobas morio (F.) (Coleoptera: Tenebrionidae) larvae on diets enriched with essential oils and post-distillation residues from Greek aromatic and medicinal plants. Two aromatic plant mixtures (A and B) were examined. Mixture A consisted of post-distillation residues, while Mixture B incorporated these residues along with essential oils. Insect rearing diets were enriched with different proportions (10, 20, and 30 %) of these mixtures, with wheat bran serving as the control. Enrichment positively influenced larval development without compromising survival. Larval weight remained unchanged with Mixture A, but improved with Mixture B. No adverse effects were detected in the case of the enriched diets, although higher concentrations of Mixture B prolonged development time.


Asunto(s)
Escarabajos , Larva , Aceites Volátiles , Plantas Medicinales , Animales , Plantas Medicinales/química , Dieta , Alimentación Animal/análisis
17.
J Fish Dis ; 47(8): e13953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616496

RESUMEN

Ferritin, transferrin, and transferrin receptors I and II play a vital role in iron metabolism, health, and indication of iron deficiency anaemia in fish. To evaluate the use of high-iron diets to prevent or reverse channel catfish (Ictalurus punctatus) anaemia of unknown causes, we investigated the expression of these iron-regulatory genes and proteins in channel catfish fed plant-based diets. Catfish fingerlings were fed five diets supplemented with 0 (basal), 125, and 250 mg/kg of either inorganic iron or organic iron for 2 weeks. Ferritin, transferrin, and transferrin receptor I and II mRNA and protein expression levels in fish tissues (liver, intestine, trunk kidney, and head kidney) and plasma were determined. Transferrin (iron transporter) and TfR (I and II) genes were generally highly expressed in fish fed the basal diet compared to those fed the iron-supplemented diets. In contrast, ferritin (iron storage) genes were more expressed in the trunk kidney of fish fed the iron-supplemented diets than in those fed the basal diet. Our results demonstrate that supplementing channel catfish plant-based diets with iron from either organic or inorganic iron sources affected the expression of the iron-regulatory genes and increased body iron status in the fish.


Asunto(s)
Alimentación Animal , Dieta , Ferritinas , Ictaluridae , Hierro , Receptores de Transferrina , Transferrina , Animales , Ictaluridae/genética , Ferritinas/genética , Ferritinas/metabolismo , Ferritinas/sangre , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Transferrina/genética , Dieta/veterinaria , Alimentación Animal/análisis , Hierro/metabolismo , Suplementos Dietéticos/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Peces , Hierro de la Dieta/administración & dosificación , Hierro de la Dieta/metabolismo , Expresión Génica/efectos de los fármacos
18.
Sci Rep ; 14(1): 7937, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575677

RESUMEN

In the present study, the inhibition performance of some medicinal plants (i.e. Yarrow, Wormwood, Maurorum, Marjoram, and Ribes rubrum) was theoretically and experimentally investigated for mild steel immersed in 1M HCl. In this way, the obtained extracts characterized by Fourier transform infrared spectroscopy (FT-IR) and the electrochemical and theoretical techniques were used to study the inhibition mechanisms of the extracts for the immersed electrode in the acidic solution. In addition, the microstructure of the electrode surface immersed in the blank and inhibitor-containing solutions characterized by field emission scanning electron microscopy (FE-SEM), and Violet-visible (UV-Vis) spectroscopy was used to confirm the adsorption of the compounds on the electrode surface. The obtained electrochemical results revealed that the inhibition performance of the green inhibitors increased by increasing their dosage in the electrolyte. In addition, it was proved that Marjoram plant extract possessed the most inhibition efficiency (up to 92%) among the under-studied herbal extracts. Marjoram extract behaved as a mixed-type inhibitor in the hydrochloric acid solution, and the adsorption process of the extract on the steel surface followed the Langmuir adsorption model. Adsorption of the compounds on the steel surface was also studied using density functional theory (DFT), and it was found that the protonated organic compounds in the extract have a high affinity for adsorption on the electrode surface in the acidic solution.

19.
Nutrients ; 16(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612967

RESUMEN

Herbal medicines are used by patients with IBD despite limited evidence. We present a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating treatment with herbal medicines in active ulcerative colitis (UC). A search query designed by a library informationist was used to identify potential articles for inclusion. Articles were screened and data were extracted by at least two investigators. Outcomes of interest included clinical response, clinical remission, endoscopic response, endoscopic remission, and safety. We identified 28 RCTs for 18 herbs. In pooled analyses, when compared with placebo, clinical response rates were significantly higher for Indigo naturalis (IN) (RR 3.70, 95% CI 1.97-6.95), but not for Curcuma longa (CL) (RR 1.60, 95% CI 0.99-2.58) or Andrographis paniculata (AP) (RR 0.95, 95% CI 0.71-1.26). There was a significantly higher rate of clinical remission for CL (RR 2.58, 95% CI 1.18-5.63), but not for AP (RR 1.31, 95% CI 0.86-2.01). Higher rates of endoscopic response (RR 1.56, 95% CI 1.08-2.26) and remission (RR 19.37, 95% CI 2.71-138.42) were significant for CL. CL has evidence supporting its use as an adjuvant therapy in active UC. Research with larger scale and well-designed RCTs, manufacturing regulations, and education are needed.


Asunto(s)
Colitis Ulcerosa , Fitoterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Colitis Ulcerosa/tratamiento farmacológico , Humanos , Resultado del Tratamiento , Curcuma , Inducción de Remisión , Extractos Vegetales/uso terapéutico , Andrographis/química , Preparaciones de Plantas/uso terapéutico
20.
Chin J Integr Med ; 30(9): 852-864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38607612

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/ß-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Plantas Medicinales , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Plantas Medicinales/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA