Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 142: 220-32, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24001835

RESUMEN

l-Carnitine is a vitamin-like amino acid derivative, which is an essential factor in fatty acid metabolism as acyltransferase cofactor and in energy production processes, such as interconversion in the mechanisms of regulation of cetogenesis and termogenesis, and it is also used in the therapy of primary and secondary deficiency, and in other diseases. The determination of carnitine and acyl-carnitines can provide important information about inherited or acquired metabolic disorders, and for monitoring the biochemical effect of carnitine therapy. The endogenous carnitine pool in humans is maintained by biosynthesis and absorption of carnitine from the diet. Carnitine has one asymmetric carbon giving two stereoisomers d and l, but only the l form has a biological positive effect, thus chiral recognition of l-carnitine enantiomers is extremely important in biological, chemical and pharmaceutical sciences. In order to get more insight into carnitine metabolism and synthesis, a sensitive analysis for the determination of the concentration of free carnitine, carnitine esters and the carnitine precursors is required. Carnitine has been investigated in many biochemical, pharmacokinetic, metabolic and toxicokinetic studies and thus many analytical methods have been developed and published for the determination of carnitine in foods, dietary supplements, pharmaceutical formulations, biological tissues and body fluid. The analytical procedures presented in this review have been validated in terms of basic parameters (linearity, limit of detection, limit of quantitation, sensitivity, accuracy, and precision). This article presented the impact of different analytical techniques, and provides an overview of applications that address a diverse array of pharmaceutical and biological questions and samples.


Asunto(s)
Carnitina/análisis , Técnicas de Química Analítica/métodos , Suplementos Dietéticos/análisis , Análisis de los Alimentos , Animales , Humanos
2.
Brain Res ; 1530: 76-81, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23892105

RESUMEN

Low-level lead (Pb) exposure has been reported to impair the formation and consolidation of learning and memory by inhibiting the expression of neural cell adhesion molecules (NCAMs) and altering the temporal profile of its polysialylation state. In this study, we investigated whether administration of low-level organic selenium (selenomethionine, Se) at different time points could affect Pb-induced changes of NCAMs in female Wistar rats. Here we reported that the exposure of Se (60µg/kg body weight/day) at different time points significantly alleviated Pb-induced reductions in the mRNA and protein levels of NCAMs, and increases in the mRNA levels of two polysialyltransferases (St8sia II, Stx; St8sia IV, Pst) as well as the sialyltransferase activity (p<0.05). The concentrations of Pb in blood and hippocampi of Wistar rats treated with the combination of Se and Pb were significantly lower than those treated with Pb alone (p<0.05). Our results suggest that low-level organic Se can not only prevent but also reverse Pb-induced alterations in the expression and polysialylated state of NCAMs as well as the concentration of Pb in rat blood and hippocampus.


Asunto(s)
Hipocampo/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Selenio/farmacología , Ácidos Siálicos/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Plomo/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA