Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Meat Sci ; 204: 109235, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37301103

RESUMEN

This study evaluated the contributions of Clostridium butyricum on skeletal muscle development, gastrointestinal flora and meat quality of lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.43 ± 1.94 kg; age, 88 ± 5 days) were divided into two dietary treatments. The control group was fed the basal diet (C group), and the probiotic group was supplemented with C. butyricum on the basis of the C group (2.5 × 108 cfu/g, 5 g/day/lamb; P group) for 90 d. The results showed that dietary C. butyricum elevated growth performance, muscle mass, muscle fiber diameter and cross-sectional area, and decreased the shear force value of meat (P < 0.05). Moreover, C. butyricum supplementation accelerated protein synthesis by regulating the gene expression of IGF-1/Akt/mTOR pathway. We identified 54 differentially expressed proteins that regulated skeletal muscle development through different mechanisms by quantitative proteomics. These proteins were associated with ubiquitin-protease, apoptosis, muscle structure, energy metabolism, heat shock, and oxidative stress. The metagenomics sequencing results showed that Petrimonas at the genus level and Prevotella brevis at the species level in the rumen, while Lachnoclostridium, Alloprevotella and Prevotella at the genus level in the feces, were significantly enriched in the P group. Also, butyric acid and valeric acid levels were elevated in both rumen and feces of the P group. Overall, our results support the idea that C. butyricum could change gastrointestinal flora, and affect skeletal muscle development and meat quality of lambs by modulating gut-muscle axis.


Asunto(s)
Clostridium butyricum , Microbioma Gastrointestinal , Femenino , Ovinos , Animales , Clostridium butyricum/fisiología , Suplementos Dietéticos/análisis , Carne/análisis , Desarrollo de Músculos , Alimentación Animal/análisis , Músculo Esquelético/metabolismo
2.
Genes (Basel) ; 13(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36553521

RESUMEN

Tengchong snow, which has white feathers and black meat, is one of the most important black-bone chicken breeds and a genetic treasure of black food in China. Although the black meat traits are dominant, there are some chickens with white meat traits born in the process of folk selection and breeding. The purpose of this study was to compare the differences in skeletal muscle development between Tengchong snow black meat chickens (BS) and white meat chickens (WS), as well as whether excessive melanin deposition has an effect on skeletal muscle development. The BS and WS groups were selected to determine their muscle development difference at stages of 1, 7, 14, 21, and 42 days, using histological stain methods to analyze the development and composing type of breast and leg muscle fibers, as well as the count of melanin in BS muscle fibers. Finally, we were validated key candidate genes associated with muscle development and melanin synthesis. The results showed that BS breast muscle development was inhibited at 7, 14, and 21 days, while the leg muscle was inhibited at 7, 14, 21, and 42 days, compared to WS. Melanin deposition was present in a temporal migration pattern and was greater in the leg muscles than in the breast muscles, and it focused around blood vessels, as well as the epithelium, perimysium, endomysium, and connective tissue. Additionally, melanin produced an inhibitory effect similar to MSTN during skeletal muscle fiber development, and the inhibition was strongest at the stage of melanin entry between muscle fibers, but the precise mechanisms need to be confirmed. This study revealed that melanin has an inhibitory effect on the early development of skeletal muscle, which will provide new insights into the role of melanin in the black-boned chicken and theoretical references for the future conservation and utilization of black-boned chicken.


Asunto(s)
Pollos , Hiperpigmentación , Animales , Melaninas/genética , Nieve , Músculo Esquelético , Desarrollo de Músculos/genética
3.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1875-1883, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32227536

RESUMEN

This study aimed to evaluate the effects of dietary guanidine acetic acid (GAA) supplementation on growth performance, carcass traits and the expression of muscle growth-related genes in finishing pigs. A total of 128 (81.03 ± 1.09 kg body weight) crossbred pigs (Duroc × Landrace ×Yorkshire) were blocked by body weight and allotted to 16 pens (eight pigs per pen), and pens were randomly assigned within blocks to one of five dietary treatments, with a basal diet (control group) or a basal diet supplemented with 0.03%, 0.06% and 0.09% GAA respectively. During the 60-day trial, GAA increased the average dairy gain (ADG) and average daily feed intake (ADFI) (p < .05). The back fat thickness of pigs fed 0.06% GAA was lower than other groups (p < .05). Pigs fed 0.06% GAA had improved lean meat percentage, loin muscle area, shear force and cross-sectional area of muscle fibre in comparison with control group (p < .05). The drop loss and the muscle fibre density in pigs fed 0.06% GAA were lower than control (p < .05). In addition, dietary GAA enhanced the expression of myosin heavy chain gene (MYH4), myogenic determination (Myod) and myogenic factor 5 (Myf5) in longissimus dorsi and carnitine palmitoyltransferase-1(CPT-1) in liver (p < .05). Meanwhile, GAA decreased the expression of Myostatin in longissimus dorsi and fatty acid synthase (FAS) in liver (p < .05). In conclusion, our results showed that appropriate dietary GAA supplementation (0.06%) promotes skeletal muscle development through changing myogenic gene expression and myofibre characteristics.


Asunto(s)
Alimentación Animal , Composición Corporal , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Expresión Génica , Glicina/análogos & derivados , Carne , Desarrollo de Músculos , Músculo Esquelético , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA