Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611698

RESUMEN

Acanthopanax senticosus polysaccharide-nano-selenium (ASPS-SENPS) and A. selenopanax selenized polysaccharides (Se-ASPS) were synthesized, and their characterization and biological properties were compared. The acid extraction method was used to extract the polysaccharides of A. selenopanax, followed by decolorization using the hydrogen peroxide method and deproteinization based on the Sevage method, and the purification of A. senticosus polysaccharides (ASPS) was carried out using the cellulose DEAE-52 ion column layer analysis method. An A. senticosus polysaccharide-nano-selenium complex was synthesized by a chemical reduction method using ASPS as dispersants. The selenization of polysaccharides from A. selenopanax was carried out using the HNO3-Na2SeO3 method. The chemical compositions, scanning electron microscopy images, infrared spectra, and antioxidant properties of ASPS-SENPS and Se-ASPS were studied, and they were also subjected to thermogravimetric analysis. The results indicated that the optimal conditions for the synthesis of ASPS-SENPS include the following: when ASPS accounts for 10%, the ratio of ascorbic acid and sodium selenium should be 4:1, the response time should be 4 h, and the reaction temperature should be 50 °C. The most favorable conditions for the synthesis of Se-ASPS were as follows: m (Na2SeO3):m (ASPS) = 4:5, response temperature = 50 °C, and response time = 11.0 h. In the in vitro antioxidant assay, when the mass concentration of Se-ASPS and ASPS-SENPS was 5 mg/mL, the removal rates for DPPH free radicals were 88.44 ± 2.83% and 98.89 ± 3.57%, respectively, and the removal rates for ABTS free radicals were 90.11 ± 3.43% and 98.99 ± 1.73%, respectively, stronger than those for ASPS. The current study compares the physiological and bioactivity effects of ASPS-SENPS and Se-ASPS, providing a basis for future studies on polysaccharides.


Asunto(s)
Eleutherococcus , Selenio , Antioxidantes/farmacología , Polisacáridos/farmacología , Peróxido de Hidrógeno
2.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613951

RESUMEN

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Asunto(s)
Antimonio , Antioxidantes , Regulación de la Expresión Génica de las Plantas , Nanopartículas , Oryza , Selenio , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Antimonio/toxicidad , Antioxidantes/metabolismo , Selenio/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo
3.
Int J Biol Macromol ; 261(Pt 2): 129900, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316329

RESUMEN

The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano­selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.


Asunto(s)
Quitosano , Malus , Mercurio , Selenio , Contaminantes Químicos del Agua , Humanos , Jugos de Frutas y Vegetales , Malus/química , Quitosano/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno
4.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401225

RESUMEN

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Asunto(s)
Ferroptosis , Selenio , Animales , Antioxidantes/metabolismo , Selenio/metabolismo , Pollos/fisiología , Muslo , Suplementos Dietéticos/análisis , Músculo Esquelético , Respuesta al Choque Térmico , Superóxido Dismutasa/metabolismo , Carne/análisis , ARN Mensajero/metabolismo , Alimentación Animal/análisis
5.
Biol Trace Elem Res ; 202(4): 1699-1710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37454307

RESUMEN

Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.


Asunto(s)
Células Caliciformes , Selenio , Animales , Femenino , Células Caliciformes/metabolismo , Proteína Sequestosoma-1/metabolismo , Selenio/farmacología , Selenio/metabolismo , Pollos/metabolismo , Autofagia , Intestino Delgado/metabolismo
6.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860879

RESUMEN

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Asunto(s)
Lesiones Encefálicas , Cerebro , Selenio , Humanos , Selenio/farmacología , Cadmio/toxicidad , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilación , Cerebro/metabolismo
7.
Biol Trace Elem Res ; 202(9): 4191-4202, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38110606

RESUMEN

This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.


Asunto(s)
Ciego , Microbioma Gastrointestinal , Nanopartículas , Selenio , Animales , Selenio/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas/química , Ciego/microbiología , Ciego/metabolismo , Codorniz , Suplementos Dietéticos , Alimentación Animal/análisis , Coturnix , Antioxidantes/metabolismo
8.
Ecotoxicol Environ Saf ; 267: 115653, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948939

RESUMEN

Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.


Asunto(s)
Cactaceae , Selenio , Betalaínas , Biofortificación , Frutas , Metabolismo Secundario , Antioxidantes
9.
Micron ; 175: 103545, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801986

RESUMEN

Selenium is commonly used as a supplement in the poultry diet and plays an important role in male fertility. However, the effect of selenium nanoparticles (Se-NPs) on exosome secretion associated with spermatozoa in the epididymis is largely unknown. H&E staining, Immunohistochemistry, Immunofluorescence and Western blot were performed to study the effect of Se-NPs on exosomes secretion associated with sperm maturation in epididymis. The results indicated that the Se-NPs showed a significant contribution to sperm concentration by light microscopy. It was observed that there was an increase in the spermatozoa concentration in the epididymis of the treated group as compared to the control group. Furthermore, exosome secretion, the expression of tumor susceptibility gene-101 (TSG-101) and cluster of differentiation (CD-63) proteins was identified by immunochemistry, immunofluorescence assay, and western blotting. After nano-selenium treatment, the exosome markers TSG-101 and CD-63 were strong positive immunoreactivity and immunosignaling in the lumen followed by epithelial lining of the epididymis. However weak positive immunoreactivity and immunosignaling were seen of TSG-101 and CD63 in the control group. In addition, highly significant protein expression of TSG-101 and CD63 in the treated group as compared to the control group was confirmed by western blotting. In conclusion, the above findings provide rich evidence about the Se-NPs play a dynamic role in exosome secretion that might be essential for sperm motility and maturation within epididymis.


Asunto(s)
Exosomas , Selenio , Masculino , Humanos , Epidídimo , Selenio/farmacología , Maduración del Esperma , Semen , Motilidad Espermática , Espermatozoides
10.
J Plant Physiol ; 289: 154095, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37741053

RESUMEN

Few studies have been conducted to investigate the impact of pesticides on the secondary metabolism of traditional Chinese medicine and strategies to mitigate the toxicity of pesticide-induced oxidative stress. The current study focuses on evaluating the potential impacts of nano selenium (NSe) and imidacloprid (IMI) on the quality, physiological biochemistry, and secondary metabolites in Perilla frutescens (L.) Britt. (P. frutescens). The study utilized metabolome analysis to explore the toxicity mechanism of IMI. The study noted that IMI-induced stress could emerge with detrimental effects by targeting the destruction of the phenylpropanoid biosynthesis pathway. IMI-induced phenylpropanoid metabolism disorder resulted in an 8%, 17%, 25%, 10%, 65%, and 29% reduction in phenylalanine, coniferyl aldehyde, ferulic acid, cafestol, p-coumaraldehyde, and p-coumaric acid levels, respectively. Under the treatment of exogenous NSe, the levels of these metabolites were increased by 16%, 32%, 22%, 22%, 92%, and 29%, respectively. The application of exogenous NSe increased the levels of these metabolites and improved the biochemical disorder and quality of P. frutescens leaves by optimizing the phenylpropanoid metabolic pathway and enhancing the antioxidant system. Overall, the results suggest that foliar application of NSe could alleviate the oxidative stress toxicity induced by IMI and improve the quality of P. frutescens.

11.
World J Microbiol Biotechnol ; 39(11): 312, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733086

RESUMEN

Pseudomonas spp are considered a common milk-associated psychotropic bacteria, leading to milk deterioration during storage; therefore, our study aimed to study the distribution of Pseudomonas aeruginosa in raw milk and its associated products then studying the growth behavior of P. aeruginosa in milk after employing chitosan nanoparticles (CsNPs 50, 25, and 15 mg/100ml) and selenium nanoparticles (SeNPs 0.5, 0.3 and 0.1 mg/100ml) as a trial to control the bacterial growth in milk during five days of cooling storage. Our study relies on the ion gelation method and green synthesis for the conversion of chitosan and selenium to nanosized particles respectively, we subsequently confirmed their shape using SEM and TEM. We employing Pseudomonas selective agar medium for monitoring the bacterial growth along the cooling storage. Our findings reported that high prevalence of Pseudomonas spp count in raw milk and kareish cheese and high incidence percent of P. aeruginosa in ice cream and yogurt respectively. Both synthesized nanoparticles exhibited antibacterial activity in a dose-dependent manner. Moreover, CsNPs50 could inhibit the P. aeruginosa survival growth to a mean average of 2.62 ± 1.18 log10cfu/ml in the fifth day of milk cooling storage; also, it was noted that the hexagonal particles SeNPs0.5 could inhibit 2.49 ± 11 log10cfu/ml in comparison to the control P. aeruginosa milk group exhibited growth survival rate 7.24 ± 2.57 log10cfu/ml under the same conditions. In conclusion, we suggest employing chitosan and selenium nanoparticles to improve milk safety and recommend future studies for the fate of nanoparticles in milk.


Asunto(s)
Quitosano , Selenio , Animales , Selenio/farmacología , Pseudomonas aeruginosa , Leche , Quitosano/farmacología , Pseudomonas
12.
Front Vet Sci ; 10: 1228360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732141

RESUMEN

Introduction: Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods: A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 µg/kg OTA), the OTA-Se cohort (50 µg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion: Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.

13.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499390

RESUMEN

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Asunto(s)
Selenio , Humanos , Animales , Selenio/farmacología , Estiércol/análisis , Genes Bacterianos , Antibacterianos/farmacología , Quimiotaxis/genética , Selenito de Sodio/farmacología , Pollos/genética , Bacterias , Farmacorresistencia Microbiana/genética , Bacteroidetes , Firmicutes
14.
Trop Anim Health Prod ; 55(4): 260, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402941

RESUMEN

The present experiment was aimed at finding the optimal supplemental dose of nano-selenium in broiler chicken during the summer season for better performance in terms of growth, blood metabolites, immune response, antioxidant status, and selenium concentration in vital organs. Three-hundred-day-old Vencobb broiler chicks were randomly distributed into five dietary treatment groups with six replicates of 10 chicks each. The dietary treatments were as follows: T1 (control group), basal diet; T2, basal diet with 0.0375 ppm of nano-Se; T3, basal diet with 0.075 ppm of nano-Se; T4, basal diet with 0.15 ppm of nano-Se; T5, basal diet with 0.3 ppm of nano-Se. The experiment was carried out for 35 days. The average gain and feed conversion ratio were best observed in T4 and T5. The antibody titres were significantly higher (P < 0.05) in the treated birds. At the 5th week, erythrocytic glutathione peroxidase, catalase, and superoxide dismutase activities were significantly (P < 0.05) higher and lipid peroxidation values were significantly (P < 0.05) lower in all the nano-Se-treated groups. The Se levels in the liver, breast muscle, kidney, brain, and gizzard were significantly (P < 0.05) increased with increased dietary nano-Se. Histological studies of the liver and kidney in the highest nano-Se-treated groups (T4 and T5) did not show any abnormal changes. It is concluded that supplementation of nano-selenium at 0.15 ppm over and above the basal level improved the performance and protect the birds from summer stress without any adverse effect on the vital organs of chicken.


Asunto(s)
Antioxidantes , Selenio , Animales , Antioxidantes/metabolismo , Selenio/metabolismo , Pollos , Suplementos Dietéticos , Estaciones del Año , Dieta/veterinaria , Alimentación Animal/análisis
15.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438752

RESUMEN

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Asunto(s)
Colitis , Eucommiaceae , Enfermedades Inflamatorias del Intestino , Selenio , Animales , Ratones , Selenio/farmacología , Selenio/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
16.
Vet Microbiol ; 284: 109816, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37348210

RESUMEN

Riemerella anatipestifer (RA) is a common disease causing economic losses to duck farms worldwide. Novel supplements are crucially needed to control this bacterium, enhance poultry performance, and produce synergistic effects with vaccines in stimulating the immune system. This study investigated the effect of nano-selenium (Nano-Se) on the vaccinated (VAC) and challenged (Ch) Pekin ducklings (Anas platyrhynchos) with RA. Five experimental groups (G1-G5) were included in this study: G1 was the control group, G2 was the RA-challenged group, G3 was the Nano-Se+Ch group, G4 was the VAC+Ch group, and G5 was the Nano-Se+VAC+Ch group. The Nano-Se (0.3 mg/kg diet) was supplemented for 5 weeks post-vaccination (PV). The ducklings were vaccinated subcutaneously with the RA vaccine at 7 days of age and challenged with RA at the 3rd week PV. Blood, pharyngeal swabs and tissue samples were collected at the 3rd week PV and at different times post-challenge (PC). The growth performance (weight gain and feed conversion ratio), clinical signs, gross lesions, mortality, bacterial shedding, haematological, immunological, and biochemical parameters, cytokines production, and histopathological lesion scores showed significant differences (P < 0.05) between the challenged (G2) group and the supplemented (G3 & G5) groups. G5 showed the highest (P < 0.05) growth performance, phagocytic activity, IgM and IgG, splenic interleukin-2 (IL-2), IL-10, and interferon-gamma (IFN-γ) gene expressions, and the lowest mortality, bacterial shedding, hepatic and renal damage, heterophil/lymphocyte ratio and lesion scores compared to the other groups. In conclusion, the supplementation of nano-selenium for five weeks in the diet can improve the growth performance, immune status, and cytokines production in ducklings vaccinated and challenged with RA.


Asunto(s)
Enfermedades de las Aves de Corral , Riemerella , Selenio , Animales , Patos/microbiología , Enfermedades de las Aves de Corral/microbiología , Selenio/farmacología , Riemerella/genética , Suplementos Dietéticos
17.
Physiol Rep ; 11(9): e15682, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144592

RESUMEN

Hypothyroidism can induce oxidative stress. Nano-selenium (Nano Sel) has antioxidant effects. The current research explored Nano Sel effects on hepatic and renal oxidative damage induced by hypothyroidism in rats. Animals were grouped into (1) Control; (2) Propylthiouracil (PTU) group which received water mixed with 0.05% of PTU; (3) PTU-Nano Sel 50; (4) PTU-Nano Sel 100; and (5) PTU-Nano Sel 150. Besides PTU, the PTU-Nano Sel groups were treated with 50, 100, or 150 µg/kg of Nano Sel intraperitoneally. Treatments were done for 6 weeks. The serum level of T4, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), albumin, total protein, creatinine, and blood urea nitrogen (BUN) was evaluated. Malondialdehyde (MDA) and total thiol concentration and the activity of catalase (CAT) and superoxide dismutase (SOD) in hepatic and renal tissues also were checked. Hypothyroidism induced by PTU significantly increased AST, ALT, ALP, creatinine, BUN, and MDA concentration and noticeably reduced albumin, total protein, total thiol level, and SOD and CAT activity. Administration of Nano Sel ameliorated the adverse effects of hypothyroidism on liver and kidney function. Nano Sel applied protective effects against hepatic and renal damage resulting from hypothyroidism via ameliorating the oxidative stress status. More cellular and molecular experiments need to be done to understand the exact mechanisms.


Asunto(s)
Hipotiroidismo , Selenio , Ratas , Animales , Selenio/farmacología , Selenio/uso terapéutico , Creatinina , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hipotiroidismo/tratamiento farmacológico , Hígado/metabolismo , Riñón/metabolismo , Superóxido Dismutasa/metabolismo , Compuestos de Sulfhidrilo
18.
Metab Brain Dis ; 38(6): 2055-2064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37133801

RESUMEN

AIM: Parkinson disease (PD) is a prevalent central nervous system degenerative condition that impacts elderly people. Recent clinical and experimental study findings have established oxidative stress as one of the main pathogeneses of PD. Selenium, a trace metals with antioxidant effects, might reverse the neurobehavioral impairments and oxidative stress in rats. Thus, the goal of this study was to ascertain if Selenium Nano Particles (SeNPs) are also effective to protect brain cells from oxidative stress or not. MAIN METHODS: SeNPs were synthesized utilizing Ascorbic acid and chitosan as a reducing and stabilizing agent. Next, eight groups (N: 6) of male Wistar rats were randomly assigned and injected by different dosage (0.1, 0,2, and 0.3 mg/kg) of Se and SeNP. Finally, to ascertain the protective benefits of SeNP on PD rats, behavioral evaluation, clinical symptoms, antioxidant activity, and oxidant levels were examined. KEY FINDINGS: According to the findings, PD rats' motor functions had developed by SeNP injection. Higher MDA levels and inhibited antioxidant activities (SOD, CAT, and GPX) in lesion group are highlighting the significant role of oxidative stress in dopaminergic neuron death and neurobehavioral abnormalities. SeNP also protect against oxidative stress as compared to the lesion group. The levels of MDA had greatly reduced while the activities of enzymes, TAC, and SeNP both had significantly increased. SIGNIFICANCE: By enhancing antioxidant activity, administration of SeNP can reduce the hazardous consequences of oxidative stress.


Asunto(s)
Nanopartículas , Enfermedad de Parkinson , Selenio , Ratas , Masculino , Animales , Selenio/farmacología , Selenio/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Wistar , Estrés Oxidativo , Encéfalo/metabolismo
19.
Int J Biol Macromol ; 242(Pt 1): 124708, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137351

RESUMEN

Nano­selenium (SeNPs) is a red elemental selenium with extremely small particles, which can be absorbed by the body and has biological activity. Currently, the most commonly used synthetic methods for SeNPs are biosynthesis and chemical synthesis. In this study, YC-3-SeNPs were biosynthesized by a strain of yak-gut Bacillus cereus YC-3, and meanwhile, CST-SeNPs were chemically synthesized and encapsulated with chitosan. A series of characterizations proved that YC-3-SeNPs and CST-SeNPs are spherical particles with excellent stability, and both have an excellent ability to scavenge free radicals in vitro. The particles of YC-3-SeNPs were encapsulated with polysaccharides, fiber, and protein, and it was less toxic than that of CST-SeNPs. Additionally, YC-3-SeNPs and CST-SeNPs may inhibit H2O2-induced oxidative stress in cardiomyocytes by activating the Keap1/Nrf2/HO-1 signaling pathway thereby scavenging ROS. Meanwhile, they may exert anti-apoptotic activity in cardiomyocytes by stabilizing mitochondrial membrane potential (∆Ψm) and balancing Bax/Bcl-2 protein, thereby reducing the protein expression of Cyt-c and Cleaved-caspase 3. Given the above, YC-3-SeNPs and CST-SeNPs with excellent antioxidant and anti-apoptotic activities may have broad application potential in the field of cardiovascular diseases.


Asunto(s)
Quitosano , Nanopartículas , Selenio , Animales , Bovinos , Antioxidantes/farmacología , Antioxidantes/química , Selenio/farmacología , Selenio/química , Quitosano/farmacología , Quitosano/química , Bacillus cereus , Proteína 1 Asociada A ECH Tipo Kelch , Peróxido de Hidrógeno , Nanopartículas/química , Factor 2 Relacionado con NF-E2
20.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047040

RESUMEN

Dietary selenium (Se) intake within the physiological range is critical to maintain various biological functions, including antioxidant defence, redox homeostasis, growth, reproduction, immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and selenite). Previous studies have largely investigated and compared the health impacts of dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including enhanced growth performance, immune functions, and nutritional quality of meats, with reduced oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans. The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals, and is linked to more powerful and superior biological activities (at a comparable Se dose) than traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive performances, their role in modulating heat and oxidative stress and inflammation and the varying modes of synthesis of SeNPs.


Asunto(s)
Nanopartículas , Selenio , Animales , Humanos , Selenocisteína , Antioxidantes , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA