Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118194, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641077

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, native to the Himalayan region, has a long history of use in traditional medicine for its heat-clearing, detoxification, anti-inflammatory, and analgesic properties. Oils extracted from P. utilis seeds are also used in cooking and cosmetics. With the increasing market demand, this extraction process generates substantial industrial biowastes. Recent studies have found many health benefits with using aqueous extracts of these biowastes, which are also rich in polysaccharides. However, there is limited research related to the reparative effects of the water extracts of P. utilis oil cakes (WEPUOC) on disruptions of the skin barrier function. AIM OF THE STUDY: This study aimed to evaluate the reparative efficacy of WEPUOC in both acute and chronic epidermal permeability barrier disruptions. Furthermore, the study sought to explore the underlying mechanisms involved in repairing the epidermal permeability barrier. MATERIALS AND METHODS: Mouse models with induced epidermal disruptions, employing tape-stripping (TS) and acetone wiping (AC) methods, were used. The subsequent application of WEPUOC (100 mg/mL) was evaluated through various assessments, with a focus on the upregulation of mRNA and protein expression of Corneocyte Envelope (CE) related proteins, lipid synthase-associated proteins, and tight junction proteins. RESULTS: The polysaccharide was the major phytochemicals of WEPUOC and its content was determined as 32.2% by the anthranone-sulfuric acid colorimetric method. WEPUOC significantly reduced transepidermal water loss (TEWL) and improved the damaged epidermal barrier in the model group. Mechanistically, these effects were associated with heightened expression levels of key proteins such as FLG (filaggrin), INV (involucrin), LOR (loricrin), SPT, FASN, HMGCR, Claudins-1, Claudins-5, and ZO-1. CONCLUSIONS: WEPUOC, obtained from the oil cakes of P. utilis, is rich in polysaccharides and exhibits pronounced efficacy in repairing disrupted epidermal barriers through increased expression of critical proteins involved in barrier integrity. Our findings underscore the potential of P. utilis wastes in developing natural cosmetic prototypes for the treatment of diseases characterized by damaged skin barriers, including atopic dermatitis and psoriasis.


Asunto(s)
Epidermis , Ácido Graso Sintasas , Extractos Vegetales , Proteínas de Uniones Estrechas , Regulación hacia Arriba , Animales , Masculino , Ratones , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética , Permeabilidad/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Agua/química
2.
J Pharm Biomed Anal ; 242: 116019, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382315

RESUMEN

Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.


Asunto(s)
Ginsenósidos , Panax , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Ginsenósidos/análisis , Metabolómica/métodos , Panax/química , Polisacáridos
3.
J Tradit Complement Med ; 14(1): 82-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223809

RESUMEN

Background and aim: Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. Loss of insulin sensitivity disrupts glucose homeostasis and elevates the risk of developing the metabolic syndrome that includes Type 2 diabetes. This study assesses the effect on subcritical-water extract of Gracilaria chorda (GC) at 210 °C (GCSW210) in IR induction models of high glucose (HG)-induced zebrafish larvae and dexamethasone (DEX)-induced L6 myotubes. Experimental procedure: The dose of HG and DEX for IR induction in zebrafish larvae and L6 myotubes was 130 mM or 0.5 µM. The capacity of glucose uptake was quantified by fluorescence staining or intensity. In addition, the activation of protein and mRNA expressions for insulin signaling (insulin-dependent or independent pathways) was measured. Results and conclusion: Exposure of zebrafish larvae to HG significantly reduced the intracellular glucose uptake with dose-dependnet manner compared to control. However, the group treated with GCSW210 significantly averted HG levels like the insulin-treated group, and significantly up- or down-regulated the mRNA expressions related to insulin production (insα) and insulin signaling pathways. Moreover, the treatment with GCSW210 effectively regulated the protein expression of PI3K/AKT, AMPK, and GLUT4 involved in the action of insulin in IR models of L6 myotubes compared to DEX-treated control. Our data indicate that GCSW210 stimulates activation of PI3K/AKT and AMPK pathways to attenuate the development of IR induced by HG in zebrafish and DEX in L6 myotubes. In conclusion, GCSW210 is a potential agent for alleviating various diseases associated with the insulin resistance.

4.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37684742

RESUMEN

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Asunto(s)
Fagopyrum , Prunus persica , Selenio , Biodegradación Ambiental , Clorofila A/análisis , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plantones/química , Selenio/metabolismo , Suelo , Agua/análisis
5.
J Ethnopharmacol ; 321: 117495, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY: This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS: A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFß1 were used as in vitro models. RESULTS: WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFß1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3ß is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3ß levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFß1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3ß/Nrf2 cascade and eliminated its protective effects against TGFß1. CONCLUSIONS: Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3ß/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.


Asunto(s)
Leucemia Mieloide Aguda , Oligoquetos , Animales , Ratones , Factor 2 Relacionado con NF-E2 , Proteínas Quinasas Activadas por AMP , Glucógeno Sintasa Quinasa 3 beta , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Hepatocitos , Fibrosis , Células Estrelladas Hepáticas , Modelos Animales de Enfermedad , Antioxidantes/efectos adversos , Leucemia Mieloide Aguda/patología
6.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5356-5364, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114125

RESUMEN

This study aims to investigate the mechanism of Linderae Radix water extract(LRWE) in the prevention and treatment of diarrhea-predominant irritable bowel syndrome(IBS-D) based on serum metabolomics. Eighteen 2-week-old male SD rats were randomized into control, IBS-D model, and LRWE groups. The rats in other groups except the control group received gavage of senna concentrate combined with restraint stress for the modeling of IBS-D. The rats in the LRWE group were administrated with LRWE(5.4 g·kg~(-1)) by gavage, and those in the control and IBS-D model groups with an equal volume of distilled water for a total of 14 days. The visceral sensitivity was evaluated by the abdominal withdrawal reflex(AWR) score, and the degree of diarrhea was assessed by the fecal water content(FWC). The morphological changes of the colon and the morphology and number of goblet cells were observed by hematoxylin-eosin(HE) and periodic acid-schiff(PAS) staining, respectively. Ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was used for the screening of the potential biomarkers in the rat serum and their related metabolic pathways. The results showed that LRWE reduced the AWR score, decreased FWC, and alleviated visceral sensitivity and diarrhea symptoms in IBS-D rats. HE and PAS staining showed that LRWE mitigated low-grade intestinal inflammation and increased the number of mature secretory goblet cells in the colonic epithelium of IBS-D rats. A total of 25 potential biomarkers of LRWE in treating IBS-D were screened out in this study, which were mainly involved in riboflavin, tryptophan, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism. The regulatory effects were the most significant on the riboflavin and tryptophan metabolism pathways. LRWE may alleviate the visceral hypersensitivity by promoting energy metabolism and amino acid metabolism, enhancing intestinal barrier function, and improving intestinal immune function in IBS-D rats.


Asunto(s)
Síndrome del Colon Irritable , Ratas , Masculino , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Agua , Cromatografía Liquida , Triptófano , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Diarrea/tratamiento farmacológico , Biomarcadores , Riboflavina
7.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4459-4466, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802872

RESUMEN

This study aims to investigate the hepatotoxicity of Psoraleae Fructus water extract and the underlying mechanism in rats. Forty-eight rats were randomly assigned into four groups: a blank group and low-(BZGL, 6.25 g·kg~(-1)), medium-(BGZM, 12.5 g·kg~(-1)), and high-dose(BGZH, 25 g·kg~(-1)) Psoraleae Fructus water extract groups. The rats were treated for 28 days, and toxicity and mortality were observed daily. After 28 days, the rats were sacrificed, and the body weight, liver index, and liver-to-brain ratio were calculated. The morphological changes in the liver tissue were observed, and the serum levels of related biochemical indicators were measured. The results showed that compared with the blank group, Psoraleae Fructus water extracts of different doses decreased the body weight, increased the liver index and liver-to-brain ratio, and caused liver hypertrophy and pathological changes. Pathological examination revealed that the rats in Psoraleae Fructus water extract groups had bile duct hyperplasia, inflammatory cell infiltration, and liver cell fibrosis. Compared with the blank group, BGZL elevated the levels of alanine transaminase(ALT), α-glutathione S-transferase(α-GST), and total bile acid(TBA)(P<0.05), and BGZM and BGZH elevated the levels of ALT, TBA, α-GST, γ-glutamyl transferase(γ-GT), purine nucleoside phosphorylase(PNP), ornithine carbamoyltransferase(OCT), and arginase(ArgI)(P<0.05). Compared with the blank group, Psoraleae Fructus water extracts of different doses down-regulated the mRNA and protein levels of bile salt export pump(BSEP) and farnesoid X receptor(FXR) and up-regulated the mRNA and protein levels of tumor necrosis factor-α(TNF-α), nuclear factor kappaB(NF-κB), and cholesterol 7 alpha-hydroxylase(CYP7A1)(P<0.05). The results suggested that Psoraleae Fructus water extract caused toxicity in rats, showing a dose-toxicity relationship. Psoraleae Fructus water extract may cause liver damage, which may be due to its effect on liver bile acid secretion and induction of inflammation.


Asunto(s)
Hígado , Agua , Ratas , Animales , Ratas Sprague-Dawley , FN-kappa B , Cirrosis Hepática , Ácidos y Sales Biliares , Peso Corporal , ARN Mensajero
8.
Integr Cancer Ther ; 22: 15347354231195323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646331

RESUMEN

Extracts from Euglena gracilis have been shown to prevent cancer growth in mouse models. However, the molecular mechanism of this anti-cancer activity has not been determined nor has the effect of Euglena extracts on tobacco smoke carcinogen-induced carcinogenesis. Here, we investigate the hypothesis that this anti-cancer activity is a result of changes in the intestinal microbiota induced by oral administration of the extract. We found that a Euglena gracilis water extract prevents lung tumorigenesis induced by a tobacco smoke-specific carcinogen (NNK) in mice treated either 2 weeks before or 10 weeks after NNK injection. Both of these treatment regimens are associated with significant increases in 27 microbiota metabolites found in the mouse feces, including large increases in triethanolamine, salicylate, desaminotyrosine, N-acetylserine, glycolate, and aspartate. Increases in the short-chain fatty acids (SCFAs) including acetate, propionate and butyrate are also observed. We also detected a significant attenuation of lung carcinoma cell growth through the induction of cell cycle arrest and apoptosis caused by low levels of SCFAs. This study provides strong evidence of anti-cancer activity in Euglena gracilis extracts against tobacco smoke carcinogen-induced tumorigenesis and demonstrates that this activity is linked to increased production of specific gut microbiota metabolites and the resultant induction of cell cycle arrest and apoptosis of lung carcinoma cells.


Asunto(s)
Carcinoma , Euglena gracilis , Microbioma Gastrointestinal , Neoplasias Pulmonares , Contaminación por Humo de Tabaco , Ratones , Animales , Carcinógenos/toxicidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Contaminación por Humo de Tabaco/efectos adversos , Carcinogénesis/inducido químicamente
9.
PeerJ ; 11: e15733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483977

RESUMEN

Faba bean water extract (FBW) and vitamin K3 (VK3) have been demonstrated to improve the muscle textural quality of fish. To better apply these two feed additives in commercial aquaculture setting, four experimental diets (control, commercial feed group; 15% FBW, 15% faba bean water extract group; 2.5% VK3, 2.5% vitamin K3 group; combined group, 15% faba bean water extract + 2.5% vitamin K3 group) were formulated to explore their combined effects of FBW and VK3 on the growth, health status, and muscle textural quality of grass carp. The growth performance, textural quality, intestinal characteristics, and oxidative and immune responses were analyzed on days 40, 80 and 120. The results showed that supplementation with higher doses of FBW and VK3 have no influence on growth-related parameters and immune parameters of grass carp. Notably, compared with the control, fish in the combined group had the highest textural qualities (hardness, chewiness and adhesiveness), followed by those in 15% FBW and 2.5% VK3 groups (P < 0.05). Also, FBW and VK3, to some extent, may lower antioxidative ability of grass carp, as illustrated by lower levels of GSH and CAT in 15% FBW, 2.5% VK3, and combined groups on day 120 (P < 0.05). In addition, enhanced lipase activity was observed in the 15% FBW group. Taken together, the combined supplementation of FBW and VK3 was demonstrated to be a more advanced option than their individual supplementation in a commercial setting owing to the resulting combined effects on both the textural quality and health status of grass carp.


Asunto(s)
Carpas , Vicia faba , Animales , Vitamina K 3 , Dieta , Inmunidad , Estrés Oxidativo
10.
Antioxidants (Basel) ; 12(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37507966

RESUMEN

Tri-Yannarose is a Thai traditional herbal medicine formula composed of Areca catechu, Azadirachta indica, and Tinospora crispa. It possesses antipyretic, diuretic, expectorant, and appetite-stimulating effects. This study aimed to evaluate the antioxidant activities, cytotoxicity, and chemical constituents of an aqueous extract following a Tri-Yannarose recipe and its plant ingredients. The phytochemical analysis was performed using LC-QTOF-MS. Antioxidant activities were determined using DPPH, ABTS, TPC, TFC, FRAP, NBT, MCA, and ORAC assays. Cytotoxicity was investigated using a methyl thiazol tetrazolium (MTT) assay. In addition, the relationship between the chemical composition of Tri-Yannarose and antioxidant activities was investigated by examining the structure-activity relationship (SAR). The results of the LC-QTOF-MS analysis revealed trigonelline, succinic acid, citric acid, and other chemical constituents. The aqueous extract of the recipe showed significant scavenging effects against ABTS and DPPH radicals, with IC50 values of 1054.843 ± 151.330 and 747.210 ± 44.173 µg/mL, respectively. The TPC of the recipe was 92.685 mg of gallic acid equivalent/g of extract and the TFC was 14.160 mg of catechin equivalent/g of extract. All extracts demonstrated lower toxicity in the Vero cell line according to the MTT assay. In addition, the SAR analysis indicated that prenyl arabinosyl-(1-6)-glucoside and quinic acid were the primary antioxidant compounds in the Tri-Yannarose extract. In conclusion, this study demonstrates that Tri-Yannarose and its plant ingredients have potent antioxidant activities with low toxicity. These results support the application of the Tri-Yannarose recipe for the management of a range of disorders related to oxidative stress.

11.
Phytother Res ; 37(8): 3195-3210, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37013717

RESUMEN

Elevations in circling branched-chain amino acids (BCAAs) levels associated with insulin resistance and type 2 diabetes mellitus (T2DM). Morus alba L. water extracts (MLE) show hypoglycemic function, but the precise mechanism remains obscure. This study is designed to investigate the association of the antidiabetes effect of MLE with the BCAAs co-metabolism modulated by host and gut microbiota. Tissue-specific expressions of BCAA-catabolizing enzymes were detected by RT-PCR and western blot, respectively. The components of the intestinal microflora were analyzed by high-throughput 16S rRNA gene sequencing. The results showed that MLE administration improved blood glucose and insulin level, decreased inflammatory cytokines expression, and lowered serum and feces BCAAs levels. Furthermore, MLE reversed the abundance changes of the bacterial genera correlated with serum and feces BCAAs, such as Anaerovorax, Bilophila, Blautia, Colidextribacter, Dubosiella, Intestinimonas, Lachnoclostridium, Lachnospiraceae_NK4A136, Oscillibacter, and Roseburia. Functionality prediction indicated that MLE potentially inhibited bacterial BCAAs biosynthesis, and promoted the tissue-specific expression of BCAAs catabolic enzyme. More importantly, MLE had obvious impacts on BCAA catabolism in germ-free-mimic T2DM mice. Those results indicated that MLE improving T2DM-related biochemical abnormalities is associated with not only gut microbiota modification but also the tissue-specific expression of BCAAs catabolic enzyme.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Morus , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Morus/química , ARN Ribosómico 16S/análisis , Aminoácidos de Cadena Ramificada/análisis , Aminoácidos de Cadena Ramificada/metabolismo , Hojas de la Planta/química
12.
J Food Sci ; 88(5): 2229-2245, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37025094

RESUMEN

The wolfberry is believed to improve eyesight in traditional Chinese medicine. Soaking wolfberry in thermos cups has become a common health-preserving practice. The object of this paper was to research the protective effects of wolfberry water extract (WWE) on oxidative injury induced by blue light-emitting diodes (LEDs) in ARPE-19 cells and C57BL/6J mice. Wolfberry water extract significantly increased cell viability, reduced ROS production, stabilized mitochondrial membrane potential, and inhibited apoptosis in blue LED-induced cells (P < 0.05). The protective effects of WWE against blue LED-induced cytotoxicity and ROS accumulation in cells were abolished by transfection with Nrf2 siRNA. In blue LED-exposed C57BL/6J mice, WWE treatment markedly increased the amplitudes of electroretinogram (ERG) waves a and b, increased the thickness of retinal outer nuclear layer (ONL), activated endogenous antioxidant enzymes, and decreased MDA levels in the retina and lens. WWE also promoted NRF2 translocation and the expression of the downstream genes Ho-1, Nqo1, Gclc, and Gclm in the retina. The protection of WWE in ERG a and b wave amplitudes and ROS levels were abrogated in Nrf2 knockout mice. These results suggested that WWE has beneficial effects on retinal injury induced by blue LED, and mechanisms of action at least partly via the NRF2 signaling pathway.


Asunto(s)
Lycium , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Estrés Oxidativo , Transducción de Señal , Apoptosis
13.
Chin J Nat Med ; 21(2): 83-98, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36871985

RESUMEN

Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/ß/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.


Asunto(s)
Poria , Animales , Ratas , Bazo , Albúminas , Cromatografía Liquida , Proteína de Unión a Elemento de Respuesta al AMP Cíclico
14.
J Agric Food Chem ; 71(12): 4890-4900, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36940448

RESUMEN

Cinnamon (Cinnamomum verum J. Presl) bark and its extracts are popular ingredients added to food and supplement products. It has various health effects, including potentially reducing the risk of coronavirus disease-2019 (COVID-19). In our study, the bioactives in cinnamon water and ethanol extracts were chemically identified, and their potential in suppressing SARS-CoV-2 spike protein-angiotensin-converting enzyme 2 (ACE2) binding, reducing ACE2 availability, and scavenging free radicals was investigated. Twenty-seven and twenty-three compounds were tentatively identified in cinnamon water and ethanol extracts, respectively. Seven compounds, including saccharumoside C, two emodin-glucuronide isomers, two physcion-glucuronide isomers, and two type-A proanthocyanidin hexamers, were first reported in cinnamon. Cinnamon water and ethanol extracts suppressed the binding of SARS-CoV-2 spike protein to ACE2 and inhibited ACE2 activity in a dose-dependent manner. Cinnamon ethanol extract had total phenolic content of 36.67 mg gallic acid equivalents (GAE)/g and free radical scavenging activities against HO• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) of 1688.85 and 882.88 µmol Trolox equivalents (TE)/g, which were significantly higher than those of the water extract at 24.12 mg GAE/g and 583.12 and 210.36 µmol TE/g. The free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) of cinnamon ethanol extract was lower than that of the water extract. The present study provides new evidence that cinnamon reduces the risk of SARS-CoV-2 infection and COVID-19 development.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Cinnamomum zeylanicum , Enzima Convertidora de Angiotensina 2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucurónidos , SARS-CoV-2 , Radicales Libres , Ácido Gálico , Etanol/química , Agua/química , Unión Proteica
15.
J Ginseng Res ; 47(2): 183-192, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926608

RESUMEN

Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

16.
Fitoterapia ; 167: 105473, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931529

RESUMEN

In this work we investigated the chemical constituents of water extract of the leaves of Cyclocarya paliurus. Two new megastigmane glycosides (3 and 8), three aliphatic alcohol glycosides (9-11), and two aromatic glycosides (12 and 13), along with fourteen known compounds were isolated, and their in vitro inhibitory activity against α-glucosidase was evaluated. Compounds 13 and 15-18 displayed inhibitory activity with IC50 values varying from 27.05 to 96.58 µM, and the structure-activity relationship among isolated compounds was discussed.


Asunto(s)
Glicósidos , alfa-Glucosidasas , Glicósidos/química , alfa-Glucosidasas/metabolismo , Extractos Vegetales/química , Agua/análisis , Estructura Molecular , Hojas de la Planta/química
17.
Mol Nutr Food Res ; 67(7): e2200791, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738163

RESUMEN

SCOPE: Methylglyoxal (MG)-derived advanced glycation end products (AGEs) directly bind to the receptor for advanced glycation end products (RAGE), subsequently exacerbating obesity and obesity-induced cognitive decline. Indian gooseberry (Phyllanthus emblica L.) fruit has antiobesity properties. However, the underlying mechanism by which Indian gooseberry fruit prevents obesity-induced cognitive decline remains unclear. METHODS AND RESULTS: This study aims to investigate the preventive effect of a water extract of Indian gooseberry fruit (WEIG) and its bioactive compound gallic acid (GA) on the obesity-induced cognitive decline through MG suppression and gut microbiota modulation in high-fat diet (HFD)-fed rats. Trapping MG, WEIG, and GA significantly ameliorate fat accumulation in adipose tissue and learning and memory deficits. Mechanistically, WEIG and GA administration effectively reduces brain MG and AGE levels and subsequently reduces insulin resistance, inflammatory cytokines, MDA production, and Alzheimer's disease-related proteins, but increases both antioxidant enzyme activities and anti-inflammatory cytokine with inhibiting RAGE, MAPK, and NF-κB levels in HFD-fed rats. Additionally, WEIG and GA supplementation increases the relative abundances of Bacteroidetes, Gammaproteobacteria, and Parasutterella, which negatively correlate with MG, inflammatory cytokine, and Alzheimer's disease-related protein expressions. CONCLUSION: This novel finding provides a possible mechanism by which WEIG prevents obesity-induced cognitive decline through the gut-brain axis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Phyllanthus emblica , Ribes , Ratas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Frutas , Obesidad/metabolismo , Citocinas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Ratones Endogámicos C57BL
18.
Cell Biochem Funct ; 41(2): 254-267, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36779418

RESUMEN

Cinnamon and its extracts have been used as herbal remedies for many ailments, including for reducing insulin resistance and diabetes complications. Type 2 diabetes mellitus (T2DM) is a rapidly growing health concern around the world. Although many drugs are available for T2DM treatment, side effects and costs can be considerable, and there is increasing interest in natural products for managing chronic health conditions. Cinnamon may decrease the expression of genes associated with T2DM risk. The purpose of this study was to evaluate the effects of cinnamon water extract (CWE) compared with metformin on T2DM-related gene expression. HepG2 human hepatoma cells, widely used in drug metabolism and hepatotoxicity studies, were treated with different concentrations of metformin or CWE for 24 or 48 h. Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and glucose uptake was compared in untreated and CWE- or metformin-treated cells under high-glucose conditions. Finally, total RNA was extracted and analyzed by RNA sequencing (RNA-seq), and bioinformatics analyses were performed to compare the transcriptional effects of CWE and metformin. We found cell viability was better in cells treated with CWE than in metformin-treated cells, demonstrating that CWE was not toxic at tested doses. CWE significantly increased glucose uptake in HepG2 cells, to the same degree as metformin (1.4-fold). RNA-seq data revealed CWE and metformin both induced significantly increased (1.3- to 1.4-fold) glucose uptake gene expression compared with untreated controls. Transcriptional differences between CWE and metformin were not significant. The effects of 0.125 mg mL-1 CWE on gene expression were comparable to 1.5 mg mL-1 (9.5 mM) metformin. In addition, gene expression at 0.125 mg mL-1 CWE was comparable to 1.5 mg mL-1 (9.5 mM) metformin. Our results reveal that CWE's effects on cell viability, glucose uptake, and gene expression in HepG2 cells are comparable to those of metformin, suggesting CWE may be an effective dietary supplement for mitigating T2DM-related metabolic dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Cinnamomum zeylanicum , Células Hep G2 , Agua , Sri Lanka , Metformina/farmacología , Glucosa
19.
Zhongguo Zhong Yao Za Zhi ; 48(1): 114-125, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725264

RESUMEN

Galli Gigerii Endothelium Corneum(GGEC), the dried gizzard membrane of Gallus gallus domesticus is a Chinese medicinal material commonly used for digestion. However, due to the particularity of texture and composition, its active ingre-dients have not been clarified so far, and there is also a lack of quality evaluation indicators. In this study, UPLC-Q-TOF-MS was used to analyze the chemical components from the water extract of GGEC, and ten nucleosides were identified for the first time. HPLC fingerprints of the water extracts of GGEC were established and the content of seven nucleosides was determined. The fingerprint similarities of 40 batches of GGEC samples ranged from 0.765 to 0.959, indicating that there were great differences among the GGEC products processed with different methods. In addition, SPSS 22.0 and SIMCA 14.1 were used for hierarchical cluster analysis(HCA) and principal component analysis(PCA) on the 19 common peaks of the HPLC fingerprints of GGEC, and the 40 batches of samples were divided into three categories: raw GGEC, fried GGEC and vinegar-processed GGEC. Eight differential components in GGEC were marked by orthogonal partial least squares discrimination analysis(OPLS-DA), two of which were adenine and thymine. The results of content determination showed that the total content of the seven nucleosides in raw GGEC, fried GGEC and vinegar-processed GGEC were 182.5-416.8, 205.3-368.7, and 194.2-283.0 µg·g~(-1), respectively. There were significant differences in the content of hypoxanthine, thymine and thymidine among the GGEC products processed with different methods(P<0.05), which were graded in the order of fried GGEC>vinegar-processed GGEC>raw GGEC. This suggested that the content of hypoxanthine, thymine and thymidine tended to increase during the frying process, and the variation range might be related to the degree of heat exposure. The established methods in this study were simple and reproducible, and could be used for qualitative and quantitative analysis of GGEC and its processed pro-ducts. This study also provided reference for the establishment of quality standards of GGEC with chemical components as control index.


Asunto(s)
Medicamentos Herbarios Chinos , Nucleósidos , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión , Ácido Acético , Timina , Timidina , Agua , Hipoxantinas
20.
Heliyon ; 9(2): e13068, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36747533

RESUMEN

Citrus hystrix or kaffir lime is a native tropical plant containing a high level of phenolic and flavonoid compounds. Its fruits are used as a food ingredient to enhance the sour-sweet scent and flavor in many dishes. Due to its polyphenol-containing, it has also been used as traditional medicine for health benefits including oral and gum health, stress relief, hair care, and skincare. In this study, we demonstrated the antioxidant activity of C. hystrix water extract and its effect on human keratinocyte and fibroblast migration. The extract showed a high amount of phenolic and flavonoid contents. The HPLC analysis indicated the presence of gallic acid, catechin, caffeic acid, rutin, and quercetin. We showed that C. hystrix water extract exhibited free radical scavenging capacity, determined by DPPH assay, with IC50 of 14.91 mg/mL, and nitrite radical scavenging capacity, determined by NO assay, with IC50 of 4.46 mg/mL. The C. hystrix water extract displayed unnoticeable toxicity at all tested doses. We showed that the treatment of water extracts as low as 50 µg/mL decreased the reactive oxygen species (ROS) from H2O2-induced ROS formation in both cell lines. Besides, C. hystrix water extract promoted cell migration in a dose-dependent manner. Together, these results demonstrated the positive benefit of C. hystrix water extract as a wound-healing accelerator. Its health benefits may be due to the antioxidant capability of its phytochemical compounds contained in C. hystrix water extract that enhances the migration of two major cell types: fibroblast and keratinocytes, responsible for the proliferation and remodeling phase of wound healing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA