Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 101-108, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817332

RESUMEN

This research was carried out to investigate the effect and mechanism of Angelic Shaoyaosan mediated AMPK/SIRT1 positive feedback loop to promote autophagy and regulate systemic inflammatory response in acute pancreatitis. In this study, the rat pancreatic acini AR42J cells were chosen as the research object, the application of hyla induced pancreatic acinar cells made model for acute pancreatitis, application of different concentrations of angelica peony spread effect on building cells, thus divided into control group, built in the module, the low concentration group, concentration and high concentration groups, determined by MTT method was applied to explore the above categories in cell proliferation, cell apoptosis was measured by flow cytometry, the expression of inflammatory factors in cell supernatant was determined by enzyme-linked immunoassay, and the expression of autophagy marker proteins LC3- ? and P62 was determined by Western-Bolt method. In order to explore the relationship between AMPK and SIRT1, immunoco-precipitation method was used to determine the interaction between AMPK and SIRT1, and dual luciferase experiment was used to explore the effect of AMPK on SIRT1. The AICAR group, BLM-275 group and negative control group were established. To explore the effect of SIRT1 on AMPK, we established SRT 1720 group, EX-527 group and control group. Direct binding between AMPK and SIRT1 should be determined by chromatin co-precipitation assay. In order to further explore the effect of AMPK/SIRT1 positive feedback loop on the systemic inflammatory response of acute pancreatitis, this study selected the medium-concentration Danggui Shaoyajiao SAN group as the control group (group C), and applied AMPK inhibitor BLM-275 and SIRT1 inhibitor EX 527 to the effect of medium-concentration Danggui Shaoyajiao SAN cells, respectively. The expression of autophagy marker proteins LC3- ? and P62 in groups A and B were determined by the Western-Bolt method. Results showed that compared with the control group, the cell survival rate, the expression of AMPK, SIRT1 and LC3-II in the model group were decreased, and the apoptosis rate of iNOS, IL-2, TNF-?, P62 and apoptosis were increased in the model group (P<0.05). the levels of iNOS, IL-2, TNF-?, P62 and cell survival rate in low, medium and high concentration groups decreased gradually, while the expressions of AMPK, SIRT1, LC3-II and cell apoptosis rate increased (P<0.05). The levels of iNOS, IL-2 and TNF-? in the three groups were gradually decreased with the increase of the concentration (P<0.05). Immunoprecipitation showed that AMPK and SIRT1 could bind to each other in cells. The double luciferase experiment indicated that the reporter gene containing the SIRT1 binding site was constructed. The luciferase activity was increased in THE AICAR group and decreased in the BLM-275 group (P<0.05). The reporter gene containing the AMPK promoter binding site was constructed. The luciferase activity in SRT1720 group was increased, while that in EX-527 group was decreased. SIRT1 could directly bind to the AMPK promoter. SIRT1 and LC3- ? protein expressions in group A were down-regulated, and P62 protein was increased (P<0.05). The protein expressions of AMPK and LC3- ? in group B were down-regulated, and the protein expression of P62 was increased (P<0.05). It concluded that AMPK can directly bind to activate SIRT1 expression, and SIRT1 expression can also activate AMPK, forming a positive feedback loop between the two. Therefore, Angelic Shaoyaodong decoction can mediate AMPK/SIRT1 positive feedback pathway to promote autophagy and regulate systemic inflammatory response in acute pancreatitis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Angelica sinensis/química , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Pancreatitis/metabolismo , Sirtuina 1/metabolismo , Células Acinares/citología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Mediadores de Inflamación/sangre , Pancreatitis/patología , Ratas , Transducción de Señal/efectos de los fármacos
2.
J Ethnopharmacol ; 274: 114029, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33731310

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chaiqin chengqi decoction (CQCQD) and its derivatives have been widely used in China for the early management of patients with acute pancreatitis (AP). Numerous studies demonstrate the anti-inflammatory and anti-oxidative effects of CQCQD and derivatives, but whether these effects can be attributed to suppressing neurogenic inflammation, has never been studied. AIM OF THE STUDY: To investigate the effects of CQCQD on substance P (SP)-neurokinin 1 receptor (NK1R) based neurogenic inflammation in an experimental AP model. MATERIAL AND METHODS: For AP patients on admission, pain score was accessed by visual analog scale (VAS); the levels of serum SP and expressions of pancreatic SP and NK1R were also determined. For in vivo study, mice received 7 intraperitoneal injections of cerulein (50 µg/kg) at hourly intervals to induce AP, whilst controls received normal saline injections. In the treatment groups, CQCQD (10 g/kg, 200 µl) was intragastrically given at the third, fifth, and seventh of the cerulein injection or the NK1R antagonist CP96345 (5 mg/kg) was intraperitoneally injected 30 min before the first cerulein administration. The von Frey test was performed to evaluate pain behavior. Animals were sacrificed at 12 h from the first cerulein/saline injection for severity assessment. Pharmacology network analysis was used to identify active ingredients of CQCQD for AP and pain. In vitro, freshly isolated pancreatic acinar cells were pre-treated with CQCQD (5 mg/ml), CP96345 (1 µM), or selected active compounds of CQCQD (12.5, 25, and 50 µM) for 30 min, followed by SP incubation for another 30 min. RESULTS: The VAS score as well as the levels of serum SP and expressions of pancreatic SP-NK1R were up-regulated in moderately severe and severe patients compared with those with mild disease. CQCQD, but not CP96345, consistently and significantly ameliorated pain, pancreatic necrosis, and systemic inflammation in cerulein-induced AP as well as inhibited NK1R internalization of pancreatic acinar cells. These effects of CQCQD were associated with reduction of pancreatic SP-NK1R and neuron activity in pancreas, dorsal root ganglia, and spinal cord. Baicalin, emodin, and magnolol, the top 3 active components of CQCQD identified via pharmacology network analysis, suppressed NK1R internalization and NF-κB signal pathway activation in isolated pancreatic acinar cells. CONCLUSIONS: CQCQD ameliorated cerulein-induced AP and its associated pain via inhibiting neuron activation-mediated pancreatic acinar cell SP-NK1R signaling pathways and its active compounds baicalin, emodin, and magnolol contributed to this effect.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Dolor/tratamiento farmacológico , Pancreatitis/tratamiento farmacológico , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Compuestos de Bifenilo/análisis , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Ceruletida , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Emodina/análisis , Emodina/farmacología , Emodina/uso terapéutico , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Lignanos/análisis , Lignanos/farmacología , Lignanos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/metabolismo , Dolor/patología , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Pancreatitis/patología , Receptores de Neuroquinina-1/genética , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sustancia P/genética
3.
Commun Biol ; 4(1): 361, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742114

RESUMEN

Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.


Asunto(s)
Células Acinares/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Traumatismos por Radiación/prevención & control , Glándulas Salivales/efectos de los fármacos , Análisis de Matrices Tisulares , Xerostomía/prevención & control , Células Acinares/metabolismo , Células Acinares/efectos de la radiación , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Hidrogeles , Masculino , Ratones Endogámicos C57BL , Microburbujas , Persona de Mediana Edad , Glándula Parótida/efectos de los fármacos , Glándula Parótida/metabolismo , Glándula Parótida/efectos de la radiación , Fenotipo , Polietilenglicoles/química , Traumatismos por Radiación/etiología , Traumatismos por Radiación/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/efectos de la radiación , Xerostomía/etiología , Xerostomía/metabolismo
4.
J Ethnopharmacol ; 257: 112861, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315735

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dachengqi decoction (DCQD) belongs to a family of purgative herbal formulas widely used in China for the treatment of acute pancreatitis (AP). AP is a prevalent digestive disease currently without an effective pharmacological intervention. Formula granules have become the preferred method for delivery of herbal formulation in China given its benefit of potency retention, dosing precision and ease of use. The efficacy of DCQD formula granules (DFGs) in experimental AP models has not been investigated. AIM OF THE STUDY: To analyse and compare the differences in chemical composition of DFGs, with their aqueous extraction (AE) and chloroform extraction (CE) derivatives. To assess their efficacy on severity and targeted pancreatic pro-inflammatory signalling pathways in freshly isolated acinar cells and two models of experimental AP. MATERIAL AND METHODS: UPLC-Q-TOF-MS was used to analyse chemical components of DFGs and their extractions. Freshly isolated mouse pancreatic acinar cells were treated with taurolithocholic acid 3-sulphate disodium salt (TLCS, 500 µM) with or without DFGs, AE and CE. Apoptotic and necrotic cell death pathway activation was measured by caspase 3/7 (10 µl/mL) and propidium iodide (PI, 1 µM), respectively, using a fluorescent plate reader. Necrotic acinar cells were also counted by epifluorescence microscopy. Mice received either 7 intraperitoneal injections of caerulein (50 µg/kg) at hourly intervals or retrograde infusion of TLCS (3 mM, 50 µl) to induce AP (CER-AP and TLCS-AP, respectively). In CER-AP, mice received oral gavage of DFGs (2.1, 4.2 and 5.2 g/kg), AE (0.6, 1.2, and 2.4 g/kg) and CE (4, 9 and 17 mg/kg), or matched DFGs (1.8 g/kg) and AE (1 g/kg) for 3 times at 2-hourly intervals, or a single intraperitoneal injection of DCQD-related monomers rhein (20 mg/kg), narigeinine (25 mg/kg), and honokiol (5 mg/kg) begun at the 3rd injection of caerulein. In TLCS-AP, DFGs (4.2 g/kg) were given orally at 1, 3 and 5 h post-surgery. Disease severity and pancreatic pro-inflammatory markers were determined. RESULTS: The main effective anthraquinones and their glycosides, flavonoids and their glycosides, polyphenols and lignans were found in the DFGs. A higher proportion of polar components including glycosides attached to anthraquinones, phenols and flavonoids was found in AE. Conversely, lower polar components containing methoxy substituted flavonoids and anthraquinones were more abundant in CE. DFGs were given at 4.2 g/kg, a consistent reduction in the pancreatic histopathology score and severity indices was observed in both CER-AP and TLCS-AP. In vitro, AE significantly reduced both apoptotic and necrotic cell death pathway activation, while CE increased TLCS-induced acinar cell necrosis. In vivo, AE at dose of 1.2 g/kg consistently reduced pancreatic histopathological scores and myeloperoxidase in the CER-AP that were associated with suppressed expression of pro-inflammatory meditator mRNAs and proteins. CE increased lung myeloperoxidase and failed to protect against CER-AP in all dosages. AE was demonstrated to be more effective than DFGs in reducing pancreatic histopathological scores and myeloperoxidase. CONCLUSIONS: AE from DFGs alleviated the severity of mouse AP models via an inhibition of pancreatic pro-inflammatory signalling pathways. Efficacy of AE on experimental AP was more potent than its original DFGs and DCQD monomers.


Asunto(s)
Células Acinares/efectos de los fármacos , Antiinflamatorios/farmacología , Mediadores de Inflamación , Páncreas Exocrino/efectos de los fármacos , Pancreatitis/prevención & control , Extractos Vegetales/farmacología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Apoptosis/efectos de los fármacos , Cloroformo/química , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Necrosis , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Pancreatitis/metabolismo , Pancreatitis/patología , Transducción de Señal , Solventes/química , Agua/química
5.
Autophagy ; 16(11): 2084-2097, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31942816

RESUMEN

Pancreatitis is a common, sometimes fatal, disease of exocrine pancreas, initiated by damaged acinar cells. Recent studies implicate disordered macroautophagy/autophagy in pancreatitis pathogenesis. ATG8/LC3 protein is critical for autophagosome formation and a widely used marker of autophagic vacuoles. Transgenic GFP-LC3 mice are a valuable tool to investigate autophagy ; however, comparison of homeostatic and disease responses between GFP-LC3 and wild-type (WT) mice has not been done. We examined the effects of GFP-LC3 expression on autophagy, acinar cell function, and experimental pancreatitis. Unexpectedly, GFP-LC3 expression markedly increased endogenous LC3-II level in pancreas, caused by downregulation of ATG4B, the protease that deconjugates/delipidates LC3-II. By contrast, GFP-LC3 expression had lesser or no effect on autophagy in liver, lung and spleen. Autophagic flux analysis showed that autophagosome formation in GFP-LC3 acinar cells increased 3-fold but was not fully counterbalanced by increased autophagic degradation. Acinar cell (ex vivo) pancreatitis inhibited autophagic flux in WT and essentially blocked it in GFP-LC3 cells. In vivo pancreatitis caused autophagy impairment in WT mice, manifest by upregulation of LC3-II and SQSTM1/p62, increased number and size of autophagic vacuoles, and decreased level of TFEB, all of which were exacerbated in GFP-LC3 mice. GFP-LC3 expression affected key pancreatitis responses; most dramatically, it worsened increases in serum AMY (amylase), a diagnostic marker of acute pancreatitis, in several mouse models. The results emphasize physiological importance of autophagy for acinar cell function, demonstrate organ-specific effects of GFP-LC3 expression, and indicate that application of GFP-LC3 mice in disease models should be done with caution.Abbreviations: AP: acute pancreatitis; Arg-AP: L-arginine-induced acute pancreatitis; ATG: autophagy-related (protein); AVs: autophagic vacuoles; CCK: cholecystokinin-8; CDE: choline-deficient, D,L-ethionine supplemented diet; CER: caerulein (ortholog of CCK); CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ER: endoplasmic reticulum; LAMP: lysosomal-associated membrane protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; TEM: transmission electron microscopy; TFEB: transcription factor EB; ZG: zymogen granule(s).


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Páncreas Exocrino/metabolismo , Células Acinares/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Transgénicos , Páncreas Exocrino/patología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo
6.
Int Immunopharmacol ; 72: 204-210, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30999210

RESUMEN

Acute pancreatitis (AP) is a common acute abdominal disease with local or systemic inflammatory response, caused by abnormal activation of digestive enzymes. Baicalein has been shown to exert anti-inflammatory effects and to attenuate the pathological changes of AP. The aim of the research was to investigate the effects of baicalein on caerulein induced pancreatitis, and to elucidate the putative underlying mechanism. In this study, the therapeutic potential of baicalein and its mechanism were investigated in a caerulein-induced AP in vivo and in vitro model. The results indicate that baicalein treatment alleviates the caerulein-induced pathological damage in the pancreas. Baicalein decreased the expression level of pro-inflammatory cytokines and chemokines of the pancreas in caerulein treated mice and of isolated pancreatic acinar cells. Moreover, baicalein inhibited the expression of NF-κB p65 and the phosphorylation of p38 MAPK, ERK (extracellular signal-regulated kinase) as well as STAT 3, which indicates that baicalein exerts its anti-inflammatory effects via dampening the NF-κB, MAPK and STAT 3 signaling pathways. Together, this study provides experimental evidence for the clinical application of Scutellaria baicalensis Georgi or baicalein and indicates that baicalein may be a promising candidate for treatment of AP patients in the future.


Asunto(s)
Antiinflamatorios , Flavanonas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Pancreatitis , Factor de Transcripción STAT3/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Ceruletida , Citocinas/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Fitoterapia , Células RAW 264.7 , alfa-Amilasas/metabolismo
7.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959771

RESUMEN

Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ and DecylTPP, indicating a non-specific effect of mitochondrial targeting. All three compounds were associated with a compensatory elevation of glycolysis and concentration-dependent increases in acinar cell apoptosis and necrosis. These data suggest that reactive oxygen species (ROS) contribute a significant negative feedback control of basal cellular metabolism. Mitochondrial targeting using positively charged molecules that insert into the inner mitochondrial member appears to be deleterious in pancreatic acinar cells, as does an antioxidant strategy for the treatment of acute pancreatitis.


Asunto(s)
Células Acinares/metabolismo , Antioxidantes/metabolismo , Linaje de la Célula , Metabolismo Energético , Mitocondrias/metabolismo , Páncreas/citología , Acetilcisteína/farmacología , Células Acinares/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Animales , Muerte Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Flavina-Adenina Dinucleótido/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , NAD/metabolismo , Compuestos Onio/farmacología , Compuestos Organofosforados/farmacología , Oxidación-Reducción , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
8.
Autophagy ; 15(11): 1954-1969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30894069

RESUMEN

Impaired macroautophagy/autophagy has been implicated in experimental and human pancreatitis. However, the transcriptional control governing the autophagy-lysosomal process in pancreatitis is largely unknown. We investigated the role and mechanisms of TFEB (transcription factor EB), a master regulator of lysosomal biogenesis, in the pathogenesis of experimental pancreatitis. We analyzed autophagic flux, TFEB nuclear translocation, lysosomal biogenesis, inflammation and fibrosis in GFP-LC3 transgenic mice, acinar cell-specific tfeb knockout (KO) and tfeb and tfe3 double-knockout (DKO) mice as well as human pancreatitis samples. We found that cerulein activated MTOR (mechanistic target of rapamycin kinase) and increased the levels of phosphorylated TFEB as well as pancreatic proteasome activities that led to rapid TFEB degradation. As a result, cerulein decreased the number of lysosomes resulting in insufficient autophagy in mouse pancreas. Pharmacological inhibition of MTOR or proteasome partially rescued cerulein-induced TFEB degradation and pancreatic damage. Furthermore, genetic deletion of tfeb specifically in mouse pancreatic acinar cells increased pancreatic edema, necrotic cell death, infiltration of inflammatory cells and fibrosis in pancreas after cerulein treatment. tfeb and tfe3 DKO mice also developed spontaneous pancreatitis with increased pancreatic trypsin activities, edema and infiltration of inflammatory cells. Finally, decreased TFEB nuclear staining was associated with human pancreatitis. In conclusion, our results indicate a critical role of impaired TFEB-mediated lysosomal biogenesis in promoting the pathogenesis of pancreatitis. Abbreviations: AC: acinar cell; AMY: amylase; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATP6V1B2: ATPase, H+ transporting, lysosomal V1 subunit B2; ATP6V1D: ATPase, H+ transporting, lysosomal V1 subunit D; ATP6V1H: ATPase, H+ transporting, lysosomal V1 subunit H; AV: autophagic vacuole; CDE: choline-deficient, ethionine-supplemented; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EM: electron microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H & E: hematoxylin and eosin; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: normal donor; NEU: neutrophil; PPARGC1A/PGC1α: peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha; RIPA: radio-immunoprecipitation; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TM: tamoxifen; WT: wild-type; ZG: zymogen granule.


Asunto(s)
Células Acinares/metabolismo , Autofagosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Pancreatitis/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/enzimología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Núcleo Celular/metabolismo , Ceruletida/toxicidad , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/genética , Lisosomas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/efectos de los fármacos , Páncreas/enzimología , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/enzimología , Pancreatitis/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Cells ; 8(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717164

RESUMEN

Although methionine sulfoxide reductase (Msr) is known to modulate the activity of multiple functional proteins, the roles of Msr in pancreatic stellate cell physiology have not been reported. In the present work we investigated expression and function of Msr in freshly isolated and cultured rat pancreatic stellate cells. Msr expression was determined by RT-PCR, Western blot and immunocytochemistry. Msr over-expression was achieved by transfection with adenovirus vectors. Pancreatic stellate cells were co-cultured with pancreatic acinar cells AR4-2J in monolayer culture. Pancreatic stellate and acinar cell function was monitored by Fura-2 calcium imaging. Rat pancreatic stellate cells were found to express MsrA, B1, B2, their expressions diminished in culture. Over-expressions of MsrA, B1 or B2 were found to enhance ATP-stimulated calcium increase but decreased reactive oxygen species generation and lipopolysaccharide-elicited IL-1 production. Pancreatic stellate cell-co-culture with AR4-2J blunted cholecystokinin- and acetylcholine-stimulated calcium increases in AR4-2J, depending on acinar/stellate cell ratio, this inhibition was reversed by MsrA, B1 over-expression in stellate cells or by Met supplementation in the co-culture medium. These data suggest that Msr play important roles in pancreatic stellate cell function and the stellate cells may serve as a brake mechanism on pancreatic acinar cell calcium signaling modulated by stellate cell Msr expression.


Asunto(s)
Células Acinares/metabolismo , Señalización del Calcio , Metionina Sulfóxido Reductasas/metabolismo , Células Estrelladas Pancreáticas/enzimología , Células Acinares/efectos de los fármacos , Adenosina Trifosfato/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular , Colecistoquinina/farmacología , Interleucina-1/biosíntesis , Lipopolisacáridos/farmacología , Modelos Biológicos , Células Estrelladas Pancreáticas/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
10.
Nutrients ; 10(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558302

RESUMEN

Dry mouth is a common complaint among the elderly population. The aim of this study was to investigate the effect of Ixeris dentata (IXD) extract on aging-induced dry mouth. We used young (two months) and aged (20 months) SD rats in our study. Using water as the vehicle, IXD extract (25, 50, and 100 mg/kg) was given via oral gavage to the young and aged rats for eight weeks. We found that the salivary flow rate relative to the submandibular gland weight was differently influenced by IXD extract treatment. IXD extract augmented the submandibular gland acinar cells, which are depleted during aging. In addition, the decreased salivary alpha-amylase, inositol triphosphate receptor, and aquaporin-5 in the aging rats were upregulated by IXD treatment. Free radical-induced oxidative stress in the aging rats was also alleviated in the IXD-treated group. The formation of high molecular weight complexes of protein disulfide isomerase, decreased expression of an ER chaperone (GRP78), and increased ER stress response (ATF-4, CHOP and p-JNK) in aging rats was regulated with IXD treatment, and eventually increased salivary secretions from the aging submandibular glands. These are the first data to suggest that IXD extract might ameliorate aging-associated oral dryness by regulating the ER environment.


Asunto(s)
Envejecimiento/fisiología , Asteraceae , Fitoterapia , Extractos Vegetales/uso terapéutico , Saliva/metabolismo , Xerostomía/tratamiento farmacológico , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Acuaporina 5/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Enfermedades de la Boca/tratamiento farmacológico , Enfermedades de la Boca/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Ratas Sprague-Dawley , Glándula Submandibular/efectos de los fármacos , Glándula Submandibular/metabolismo , Regulación hacia Arriba , Xerostomía/etiología , Xerostomía/prevención & control , alfa-Amilasas/metabolismo
11.
Pflugers Arch ; 470(4): 613-621, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29344775

RESUMEN

The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl- efflux and the subsequent paracellular Na+ transport. In this model, the Na+-K+ pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl- transport via basolateral Na+-K+-2Cl- cotransport is generated by the Na+-K+ pump. In addition, the continuous electrochemical gradient for Cl- flow during acinar cell stimulation is maintained by the basolateral K+ efflux. However, using a combination of single-cell electrophysiology and Ca2+-imaging, we demonstrate that photolysis of Ca2+ close to the apical membrane of parotid acinar cells triggered significant K+ current, indicating that a substantial amount of K+ is secreted into the lumen during stimulation. Nevertheless, the K+ content of the primary saliva is relatively low, suggesting that K+ might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na+-K+ pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K+ from and secretes Na+ to the lumen, which can partially supplement the paracellular Na+ pathway.


Asunto(s)
Células Acinares/metabolismo , Transporte Biológico/fisiología , Transporte Iónico/fisiología , Glándula Parótida/metabolismo , Potasio/metabolismo , Saliva/metabolismo , Sodio/metabolismo , Células Acinares/fisiología , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Cloruros/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Glándula Parótida/fisiología , Salivación/fisiología
12.
Cell Metab ; 25(3): 635-646, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273482

RESUMEN

The gut microbiome participates in numerous physiologic functions and communicates intimately with the host immune system. Antimicrobial peptides are critical components of intestinal innate immunity. We report a prominent role for antimicrobials secreted by pancreatic acini in shaping the gut microbiome that is essential for intestinal innate immunity, barrier function, and survival. Deletion of the Ca2+ channel Orai1 in pancreatic acini of adult mice resulted in 60%-70% mortality within 3 weeks. Despite robust activation of the intestinal innate immune response, mice lacking acinar Orai1 exhibited intestinal bacterial outgrowth and dysbiosis, ultimately causing systemic translocation, inflammation, and death. While digestive enzyme supplementation was ineffective, treatments constraining bacterial outgrowth (purified liquid diet, broad-spectrum antibiotics) rescued survival, feeding, and weight gain. Pancreatic levels of cathelicidin-related antimicrobial peptide (CRAMP) were reduced, and supplement of synthetic CRAMP prevented intestinal disease. These findings reveal a critical role for antimicrobial pancreatic secretion in gut innate immunity.


Asunto(s)
Células Acinares/metabolismo , Antiinfecciosos/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Inmunidad Innata , Proteína ORAI1/metabolismo , Páncreas/citología , Animales , Señalización del Calcio , Muerte Celular , Exocitosis , Eliminación de Gen , Homeostasis , Inflamación/patología , Mediadores de Inflamación/metabolismo , Intestinos/microbiología , Intestinos/patología , Ratones , Viabilidad Microbiana , Proteína ORAI1/deficiencia , Biosíntesis de Proteínas
13.
PLoS One ; 12(1): e0169069, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060936

RESUMEN

BACKGROUND: Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. METHODS AND FINDINGS: We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. CONCLUSION: Our results suggest that RJ improves tear volume in patients with dry eye. TRIAL REGISTRATION: Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).


Asunto(s)
Suplementos Dietéticos , Síndromes de Ojo Seco/tratamiento farmacológico , Ácidos Grasos/química , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Células Acinares/ultraestructura , Adulto , Animales , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/diagnóstico , Humanos , Aparato Lagrimal/efectos de los fármacos , Aparato Lagrimal/fisiopatología , Ratones , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
14.
J Pathol ; 241(1): 104-114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27741349

RESUMEN

Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Acinares/metabolismo , Hepcidinas/deficiencia , Sobrecarga de Hierro/complicaciones , Pancreatitis Crónica/etiología , Animales , Apoptosis/fisiología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Hepcidinas/genética , Hepcidinas/fisiología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Estrés Oxidativo/fisiología , Páncreas/ultraestructura , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología
15.
Gut ; 65(8): 1333-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26071131

RESUMEN

OBJECTIVE: Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. DESIGN: We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. RESULTS: MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. CONCLUSIONS: This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease.


Asunto(s)
Células Acinares , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Páncreas , Pancreatitis Aguda Necrotizante , Fosfoproteínas Fosfatasas/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Autofagia/efectos de los fármacos , Calcio/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacología , Ratones , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Pancreatitis Aguda Necrotizante/inducido químicamente , Pancreatitis Aguda Necrotizante/metabolismo , Pancreatitis Aguda Necrotizante/patología
16.
Chin J Integr Med ; 21(1): 29-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24817315

RESUMEN

OBJECTIVE: To investigate the effect of Chaiqin Chengqi Decoction (,CQCQD) on cholecystokinin receptor 1 (CCKR1)-mediated signal transduction of pancreatic acinar cell in rats with acute necrotic pancreatitis (ANP). METHODS: Twenty-seven Sprague-Dawley rats were randomized into three groups: the control group, the ANP group, and the CQCQD group (9 in each group). ANP rats were induced by two intraperitoneal injections of 8% L-arginine (pH=7.0, 4.4 g/kg) over a 2-h period. Rats were treated with 1.5 mL/100 g body weight of CQCQD (CQCQD group) or physiological saline (control and ANP groups) at 2 h interval. And 6 h after induction, pancreatic tissues were collected for histopathological examination. Pancreatic acinar cells were isolated for determination of CCKR1 mRNA and protein expression, phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3), and determination of fluorescence intensity (FI) as a measure of intracellular calcium ion concentration [Ca(2+)]i. RESULTS: The pancreatic histopathological score (6.2 ± 1.1) and the levels of PLC (1,187.2 ± 228.2 µg/mL) and IP3 (872.2 ± 88.4 µg/mL) of acinar cells in the ANP group were higher than those in the control (2.8 ± 0.4, 682.5 ± 121.8 µg/mL, 518.4 ± 115.8 µg/mL) and the CQCQD (3.8 ± 0.8, 905.3 ± 78.5 µg/mL, 611.0 ± 42.5 µg/mL) groups (P<0.05). [Ca(2+)]i FI for the ANP group (34.8±27.0) was higher than that in the control (5.1 ± 2.2) and CQCQD (12.6 ± 2.5) groups (P<0.05). The expression of pancreatic acinar cell CCKR1 mRNA in the ANP group was up-regulated (expression ratio=1.761; P=0.024) compared with the control group. The expression of pancreatic acinar cell CCKR1 mRNA in the CQCQD group was down-regulated (expression ratio=0.311; P=0.035) compared with the ANP group. The ratio of gray values of the CCKR1 and ß-actin in the ANP group (1.43 ± 0.17) was higher than those in the control (0.70 ± 0.15) and CQCQD (0.79 ± 0.11) groups (P<0.05). CONCLUSIONS: Pancreatic acinar cell calcium overload of ANP induced by L-arginine was related to the up-regulated expressions of pancreatic acinar cell CCKR1 mRNA and protein. CQCQD can down-regulate expressions of pancreatic acinar cell CCKR1 mRNA and protein to reduce the PLC and IP3 of pancreatic acinar cells, relieving the calcium overload and reducing the pathological changes in rats with ANP.


Asunto(s)
Células Acinares/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Páncreas/patología , Pancreatitis Aguda Necrotizante/tratamiento farmacológico , Pancreatitis Aguda Necrotizante/patología , Receptores de Colecistoquinina/metabolismo , Transducción de Señal , Células Acinares/efectos de los fármacos , Animales , Western Blotting , Calcio/metabolismo , Medicamentos Herbarios Chinos/farmacología , Fluorescencia , Regulación de la Expresión Génica/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Colecistoquinina/genética , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo
17.
Pancreas ; 43(1): 118-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24326366

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the effects of Opuntia humifusa (OH) on cerulein-induced acute pancreatitis (AP). METHODS: Acute pancreatitis was induced via intraperitoneal injection of cholecystokinin analog cerulein (50 µg/kg). In the OH pretreatment group, OH was administered intraperitoneally (100, 250, or 500 mg/kg) 1 hour before first cerulein injection. In the posttreatment group, OH was administered intraperitoneally (500 mg/kg) 1 hour after the first cerulein injection. Furthermore, we isolated the pancreatic acinar cells using collagenase method, then investigated the acinar cell viability, cytokine productions, and the regulating mechanisms. RESULTS: The both pretreatment and posttreatment of OH treatment attenuated the severity of AP, as shown by the histology of the pancreas and lung, and inhibited neutrophil infiltration; serum amylase and lipase activities; proinflammatory cytokine expression such as interleukin 1, interleukin 6, and tumor necrosis factor α; and cell death including apoptosis and necrosis. Furthermore, OH inhibited the activation of c-Jun N-terminal kinases. CONCLUSIONS: These results suggest that OH reduces the severity of AP by inhibiting acinar cell death through c-Jun N-terminal kinases.


Asunto(s)
Opuntia/química , Páncreas/efectos de los fármacos , Pancreatitis/prevención & control , Extractos Vegetales/farmacología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Enfermedad Aguda , Amilasas/sangre , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ceruletida , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica/efectos de los fármacos , Proteína HMGB1/metabolismo , Inyecciones Intraperitoneales , Lipasa/sangre , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/sangre , Pancreatitis/inducido químicamente , Extractos Vegetales/administración & dosificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
18.
Food Chem Toxicol ; 56: 214-22, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23459147

RESUMEN

To examine the safety of Dietary Applephenon® (AP) in feed, Crl: CD (SD) rats of each sex were divided into four groups and given diets containing AP at 0%, 1.25%, 2.5%, or 5.0% for 90 days. All rats survived and toxic changes were not observed throughout the study. Body weight and food efficiency in the 5.0% AP group of both sexes were significantly decreased compared with that in controls. These changes were considered to be caused by the physiological effects of AP (including the inhibitory effects on pancreatic lipase activity). Slight hypertrophy in acinar cells in the parotid and submandibular glands appeared in the 2.5% and 5.0% groups. These were suggested not to be toxicological but physiologic adaptive responses to oral stimuli by the lower pH of AP-containing diets. In conclusion, dietary AP in feed, up to a maximum level of 5.0% for 90 days, given to rats did not induce toxicological effects.


Asunto(s)
Células Acinares/patología , Suplementos Dietéticos , Extractos Vegetales/toxicidad , Polifenoles/toxicidad , Glándulas Salivales/patología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Dieta , Relación Dosis-Respuesta a Droga , Femenino , Hipertrofia , Masculino , Malus/química , Nivel sin Efectos Adversos Observados , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Ratas , Glándulas Salivales/citología , Glándulas Salivales/efectos de los fármacos , Pruebas de Toxicidad Subaguda
19.
Lab Invest ; 93(1): 31-40, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23069938

RESUMEN

Integrin receptors are responsible for integrating extracellular matrix signals inside the cell. The most prominent integrin receptor, ß1 integrin, has a role in cell function, survival and differentiation. Recently, we demonstrated a profound in vivo role of ß1 integrin expression in the pancreas on glucose homeostasis and islet function. Here, we extend these results by examining the role of ß1 integrin in exocrine pancreatic structure and function. Adult C57Bl/6 mice hemizygous for a collagen type Iα2 (Col1a2) promoter-controlled tamoxifen-inducible Cre recombinase gene and homozygous for loxP-ß1 integrin were injected with tamoxifen or corn oil to generate mice deleted or not for ß1 integrin. Pancreata derived from these male mice were analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. Our results showed that ß1 integrin-deficient mice displayed a significant decrease in pancreas weight with a significant reduction of amylase, regenerating islet-derived protein II and carboxypeptidase-A expression (P<0.05-0.01). Compared with control pancreata, ß1 integrin-deficient pancreata showed reduced mRNA expression of extracellular matrix (collagen type Iα2, fibronectin and laminin) genes (P<0.05), detached acini clusters and lost focal adhesion structure. Moreover, ß1 integrin-deficient pancreatic acinar cells displayed decreased proliferation (P<0.05) and increased apoptosis (P<0.001). Apoptosis was reduced to that of controls when isolated exocrine clusters were cultured in media supplemented with extracellular matrix proteins. Taken together, these results implicate ß1 integrin as an essential component for maintaining exocrine pancreatic structure and function.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Páncreas Exocrino/fisiología , Células Acinares/metabolismo , Amilasas/metabolismo , Animales , Apoptosis , Ingestión de Alimentos , Histocitoquímica , Integrina beta1/genética , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Páncreas Exocrino/citología , Páncreas Exocrino/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Autoimmun ; 39(1-2): 49-56, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22300712

RESUMEN

The purpose of the review is to consider pathomechanisms of Sjögren's syndrome (SS), which could explain the female dominance (9:1), the most common age of onset (40-50 years) and targeting of the exocrine glands. Estrogens seem to specifically protect secretory glandular acinar cells against apoptosis whereas lack of estrogens during menopause and climacterium specifically leads to increased apoptosis of the exocrine secretory cells. Male gonads produce testosterone and convert it in exocrine glands to dihydrotesterosterone (DHT), which is anti-apoptotic and protects against acinar cell apoptosis. Estrogen-deficient women need to produce dehydroepiandrosterone (DHEA) in the adrenal glands and convert it to DHT in exocrine glands in a complex and branching reaction network in which individual enzymatic reactions are catalyzed in forward and backward directions by a myriad of different isoforms of steroidogenic enzymes. Tailoring DHT in peripheral tissues is much more complex and vulnerable in women than in men. In SS the intracrine steroidogenic enzyme machinery is deranged. These endo-/intracrine changes impair acinar remodeling due to impaired integrin α1ß1 and integrin α2ß1 expression so that the intercalated duct progenitor cells are unable to migrate to the acinar space, to differentiate to secretory acinar cells upon contact with laminin-111 and laminin-211 specifically found in the acinar basement membrane. The disarranged endo-/intracrine estrogen/androgen balance induces acinar cells to release microparticles and apoptotic bodies and to undergo apoptotis and/or anoikis. Membrane particles contain potential autoantigens recognized by T- (TCRs) and B-cell receptors (BCRs) and danger-associated molecular patterns (DAMPs) recognized by Toll-like receptors (TLRs). In membrane particles (or carrier-complexes) antigen/adjuvant complexes could stimulate professional antigen capturing, processing and presenting cells, which can initiate auto-inflammatory and autoimmune cascades, break the self-tolerance and finally lead to SS.


Asunto(s)
Apoptosis , Estrógenos/metabolismo , Glándulas Exocrinas/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Síndrome de Sjögren/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Animales , Deshidroepiandrosterona/metabolismo , Dihidrotestosterona/metabolismo , Femenino , Humanos , Masculino , Ratones , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA