Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412575

RESUMEN

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Calpaína/genética , Calpaína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Flavonoides/farmacología , Neoplasias Pancreáticas/patología , Hierro/metabolismo , Homeostasis
2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069105

RESUMEN

Calpain is defined as a member of the superfamily of cysteine proteases possessing the CysPC motif within the gene. Calpain-1 and -2, which are categorized as conventional isozymes, execute limited proteolysis in a calcium-dependent fashion. Accordingly, the calpain system participates in physiological and pathological phenomena, including cell migration, apoptosis, and synaptic plasticity. Recent investigations have unveiled the contributions of both conventional and unconventional calpains to the pathogenesis of cardiometabolic disorders. In the context of atherosclerosis, overactivation of conventional calpain attenuates the barrier function of vascular endothelial cells and decreases the immunosuppressive effects attributed to lymphatic endothelial cells. In addition, calpain-6 induces aberrant mRNA splicing in macrophages, conferring atheroprone properties. In terms of diabetes, polymorphisms of the calpain-10 gene can modify insulin secretion and glucose disposal. Moreover, conventional calpain reportedly participates in amino acid production from vascular endothelial cells to induce alteration of amino acid composition in the liver microenvironment, thereby facilitating steatohepatitis. Such multifaceted functionality of calpain underscores its potential as a promising candidate for pharmaceutical targets for the treatment of cardiometabolic diseases. Consequently, the present review highlights the pivotal role of calpains in the complications of cardiometabolic diseases and embarks upon a characterization of calpains as molecular targets.


Asunto(s)
Aterosclerosis , Calpaína , Humanos , Calpaína/genética , Calpaína/metabolismo , Células Endoteliales/metabolismo , Proteolisis , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aminoácidos/metabolismo
3.
Free Radic Biol Med ; 208: 700-707, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748718

RESUMEN

INTRODUCTION: Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS: Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS: In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS: In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.


Asunto(s)
Síndrome Metabólico , Isquemia Miocárdica , Porcinos , Animales , Miocardio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Calpaína/farmacología , Síndrome Metabólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carbonilación Proteica , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo , Modelos Animales de Enfermedad
4.
BMC Musculoskelet Disord ; 22(1): 1020, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863162

RESUMEN

BACKGROUND: Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. CASE PRESENTATION: In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband's cDNA sample. The results revealed that this splicing variant disrupts the original 3' splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). CONCLUSIONS: Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


Asunto(s)
Calpaína , Distrofia Muscular de Cinturas , Calpaína/genética , Homocigoto , Humanos , Masculino , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación
5.
Magnes Res ; 33(3): 68-85, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210606

RESUMEN

Magnesium (Mg) plays important roles in maintaining genomic stability and cellular redox. Mg also serves as nature's physiological calcium (Ca) channel antagonist, controlling intracellular Ca entry. Because Ca is the most important second messenger, its intracellular concentration is tightly regulated. Excess intracellular Ca can activate aberrant signaling pathways leading to the acquisition of pathological characteristics and cell injury. Several epidemiological studies have linked Mg deficiency (MgD) and increased Ca:Mg ratios with higher incidences of colon cancer and increased mortality. While it is estimated that less than 50% of the US population consumes the recommended daily allowance for Mg, Ca supplementation is widespread. Therefore, we studied the effect of MgD, with variable Ca:Mg ratios on cellular oxidative stress, cell migration, calpain activity, and associated signaling pathways using the CT26 colon cancer cell line. MgD (with Ca:Mg ratios >1) elevated intracellular Ca levels, calpain activity and TRPM7 expression, as well as oxidative stress and cell migration, consistent with observed degradation of full-length E-cadherin, ß-catenin, and N-terminal FAK. MgD was accompanied by enhanced degradation of IκBα and the transactivation domain containing the C-terminus of NF-κB p65 (RelA). MgD-exposed CT26 cells exhibited increased p53 degradation and aneuploidy, markers of genomic instability. By contrast, these pathological changes were not observed when CT26 were cultured under MgD conditions where the Ca:Mg ratio was kept at 1. Together, these data support that exposure of colon cancer cells to MgD with physiological Ca concentrations (or increasing Ca:Mg ratios) leads to the acquisition of a more aggressive, metastatic phenotype.


Asunto(s)
Calcio/metabolismo , Neoplasias del Colon/metabolismo , Deficiencia de Magnesio/metabolismo , Magnesio/metabolismo , Calcio/análisis , Calpaína/genética , Calpaína/metabolismo , Humanos , Magnesio/análisis , Estrés Oxidativo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Células Tumorales Cultivadas
6.
Biosci Rep ; 40(11)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33078830

RESUMEN

Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2-specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.


Asunto(s)
Calpaína/metabolismo , Troponina T/metabolismo , Autólisis , Calpaína/genética , Activación Enzimática , Estabilidad de Enzimas , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteolisis , Especificidad por Sustrato , Factores de Tiempo
7.
Am J Chin Med ; 48(5): 1179-1202, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32668972

RESUMEN

Over-expression of calpains in tumor tissues can be associated with cancer progression. Thus, inhibition of calpain activity using specific inhibitors has become a novel approach to control tumor growth. In this study, the anticancer potential of cryptotanshinone in combination with calpain inhibitor had been investigated in colon cancer cells and tumor xenograft. Cryptotanshinone elicited an initial endoplasmic reticular (ER) stress response, whereas prolonged stress would result in the promotion of apoptosis. It was then discovered that cryptotanshinone could cause rapid and sustained increase in cytosolic calcium in colon cancer cells accompanied by early GRP78 overexpression, which could be attenuated by pre-treatment of the calcium chelator BAPTA-AM. Cryptotanshinone also facilitated an early increase in calpain activity, which could be blocked by BAPTA-AM or the calpain inhibitor PD150606. A dynamic interaction between GRP78 and calpain during the action of cryptotanshinone was unveiled. This together with the altered NF-[Formula: see text]B signaling could be abolished by calpain inhibitor. GRP78 knockdown increased the sensitivity of cancer cells to cryptotanshinone-evoked apoptosis and reduction of cancer cell colony formation. Such sensitization of drug action had been confirmed to be p53-dependent by using p53-mutated (HT-29) and p53-deficient (HCT116 p53-∕-) cells. The synergistic antitumor effect of cryptotanshinone and calpain inhibitor was further exhibited in vivo. Taken together, findings in this study exemplify a new chemotherapeutic regimen comprising cryptotanshinone and calpain inhibitor by regulation of calpain and calcium homeostasis. This has provided us with new insights in the search of a potential target-specific neoadjuvant therapy against colon cancer.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calcio/metabolismo , Calpaína/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Homeostasis/efectos de los fármacos , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Fitoterapia , Proteína p53 Supresora de Tumor/metabolismo , Animales , Calpaína/genética , Neoplasias del Colon/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones Desnudos , Células Tumorales Cultivadas
8.
EBioMedicine ; 55: 102767, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361251

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a devastating prognosis. The performance of clinicopathologic parameters and molecules as prognostic factors remains limited and inconsistent. The present study aimed to construct a multi-molecule biomarker panel to more accurately predict post-resectional prognosis of PDAC patients. METHODS: Firstly, a novel computational strategy integrating prognostic evidence from omics and literature on the basis of bioinformatics prediction (CIPHER) to generate the network, was designed to systematically identify potential high-confidence PDAC-related prognostic candidates. After specimens from 605 resected PDAC patients were retrospectively collected, 23 candidates were detected immunohistochemically in tissue-microarrays for the development cohort to construct a multi-molecule panel. Lastly, the panel was validated in two independent cohorts. FINDINGS: According to the constructed five-molecule panel, disease-specific survival (DSS) was significantly poorer in high-risk patients than in low-risk ones in development cohort (HR 2.15, 95%CI 1.51-3.05, P<0.0001; AUC 0.67). In two validation cohorts, similar significant differences between the two groups were also observed (HR 3.18 and 3.31, 95%CI 1.89-5.37 and 1.78-6.16, All P<0.0001; AUC 0.72 and 0.73). In multivariate analyses, this panel was the sole prognosticator that was significant in each cohort. Furthermore, its predictive power for long-term survival, higher than its individual constituents, could be largely enhanced by combination with traditional clinicopathological variables. Finally, adjuvant chemotherapy (ACT) correlated with better DSS only in high-risk patients, uni- and multi-variately, in all the cohorts. INTERPRETATION: The novel prognostic panel developed by a systematically network-based strategy presents strong ability in prediction of post-resectional survival of PDAC patients. Furthermore, panel-defined high-risk patients might benefit more from ACT.


Asunto(s)
Calpaína/genética , Carcinoma Ductal Pancreático/diagnóstico , Proteínas Dishevelled/genética , Filaminas/genética , Proteínas Hedgehog/genética , Neoplasias Pancreáticas/diagnóstico , Proteína con Dedos de Zinc GLI1/genética , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica , Área Bajo la Curva , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Calpaína/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/cirugía , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Proteínas Dishevelled/metabolismo , Femenino , Filaminas/metabolismo , Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pancreatectomía/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/cirugía , Pronóstico , Estudios Retrospectivos , Proteína con Dedos de Zinc GLI1/metabolismo
9.
Neuropathol Appl Neurobiol ; 46(6): 564-578, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32342993

RESUMEN

AIMS: The most common autosomal recessive limb girdle muscular dystrophy is associated with the CAPN3 gene. The exclusively recessive inheritance of this disorder has been recently challenged by the description of the recurrent variants, c.643_663del21 [p.(Ser215_Gly221del)] and c.598_612del15 [p.(Phe200_Leu204del)], associated with autosomal dominant inheritance. Our objective was to confirm the existence of autosomal dominant calpainopathies. METHODS: Through our activity as one of the reference centres for genetic diagnosis of calpainopathies in France and the resulting collaborations through the French National Network for Rare Neuromuscular Diseases (FILNEMUS), we identified four families harbouring the same CAPN3 heterozygous variant with supposedly autosomal dominant inheritance. RESULTS: We identified a novel dominantly inherited CAPN3 variant, c.1333G>A [p.(Gly445Arg)] in 14 affected patients from four unrelated families. The complementary phenotypic, functional and genetic findings correlate with an autosomal dominant inheritance in these families, emphasizing the existence of this novel transmission mode for calpainopathies. The mild phenotype associated with these autosomal dominant cases widens the phenotypic spectrum of calpainopathies and should therefore be considered in clinical practice. CONCLUSIONS: We confirm the existence of autosomal dominant calpainopathies as an entity beyond the cases related to the in-frame deletions c.643_663del21 and c.598_612del15, with the identification of a novel dominantly inherited and well-documented CAPN3 missense variant, c.1333G>A [p.(Gly445Arg)]. In addition to the consequences for genetic counselling, the confirmation of an autosomal dominant transmission mode for calpainopathies underlines the importance of re-assessing other myopathies for which the inheritance is considered as strictly autosomal recessive.


Asunto(s)
Calpaína/genética , Aberraciones Cromosómicas , Proteínas Musculares/genética , Enfermedades Neuromusculares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Francia , Genes Dominantes/genética , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Adulto Joven
10.
Fish Shellfish Immunol ; 98: 19-24, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31899359

RESUMEN

Calpains (CAPNs) belong to the papain superfamily of cysteine proteases, and they are calcium-dependent cytoplasmic cysteine proteases that regulate a variety of physiological processes. We obtained the sequence of CAPN3 from an NGS-based analysis of Pagrus major (PmCAPN3) and confirmed the conserved molecular biological properties in the predicted amino acid sequence. The amino acid sequence and predicted domains of CAPN3 were found to be highly conserved in all of the examined species, and one catalytic domain and four calcium binding sites were identified. In healthy P. major, the PmCAPN3 mRNA was most abundantly expressed in the muscle and skin, and ubiquitously expressed in the other tissues used in the experiment. After artificial infections with fish pathogens, significant changes in its expression levels were found in immune-related tissues, most of showed upregulation. In particular, the highest level of expression was found in the liver, a tissue associated with protease activity. Taken together, these results suggest a physiological activity for PmCAPN3 in P. major and reveal functional possibilities that have not yet been reported in the immune system.


Asunto(s)
Calpaína/genética , Calpaína/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Dorada/genética , Dorada/inmunología , Inmunidad Adaptativa/genética , Secuencia de Aminoácidos , Animales , Calpaína/química , ADN Complementario/genética , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia , ARN Mensajero/genética , Alineación de Secuencia/veterinaria , Análisis de Secuencia de ADN/veterinaria
11.
Zhen Ci Yan Jiu ; 45(12): 968-72, 2020 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-33415854

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) on motor function, calpain and calpastatin expression in rats with spinal cord injury, so as to explore the mechanism of EA underlying improvement of acute spinal cord injury. METHODS: Thirty male SD rats were randomly divided into sham operation group, model group and EA group, with 10 rats in each group. The acute moderate spinal cord injury model was established by using a NYU spinal cord impactor. EA was applied to "Jizhong"(GV6) and "Mingmen" (GV4) for 30 min, once daily for 28 d. The Basso, Beattie and Bresnahan (BBB) rating scale (0 to 21 points) was used to assess changes of locomotor function. Histopathological changes of the injured spinal cord were observed after sectioning and Nissl staining, and the expression levels of calpain1, calpain2 and calpastatin mRNA and protein in the spinal cord tissues were detected by using quantitative real-time PCR and Western blot, respectively. RESULTS: The BBB score of the model group was significantly lower than that of the sham operation group (P<0.01), and was significantly higher in the EA group than that of the model group on 14th and 28th day (P<0.01). Compared with the sham operation group, the number of neurons in the model group decreased, and Nissl body stained cells decreased or even disappeared, which was evidently milder in the EA group. Compared with the sham operation group, the expression levels of calpain1 mRNA and protein in the spinal cord of the model group were significantly increased (P<0.01), while the expression levels of calpastatin mRNA and protein were significantly reduced (P<0.01). Following EA intervention, in contrast to the model group, the expression levels of calpain1 mRNA and protein in the EA group were significant down-regulated (P<0.01), calpastatin mRNA and protein expression levels were significantly up-regulated(P<0.01). There was no significant difference in calpain2 mRNA and protein expression among the 3 groups(P>0.05). CONCLUSION: EA can improve the locomotor function of rats with spinal cord injury, which may be related to its effect in inhibiting the activity of calpain in the injured spinal cord.


Asunto(s)
Electroacupuntura , Traumatismos de la Médula Espinal , Animales , Calpaína/genética , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia
12.
Sci Rep ; 9(1): 15771, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673071

RESUMEN

Angiogenesis is involved in both normal physiological and pathological conditions. Vascular endothelial growth factor (VEGF) is a major factor for promoting angiogenesis. The current anti-VEGF therapies have limited efficacy and significant adverse effects. To find novel targets of VEGFA for angiogenesis inhibition, we performed yeast two-hybrid screening and identified calpain-6 as a novel VEGFA-interaction partner and confirmed the endogenous VEGFA-calpain-6 interaction in mammalian placenta. A domain mapping study revealed that the Gly321-Asp500 domain in calpain-6 is required for the interaction with the C-terminus of the VEGFA protein. The functional significance of the VEGFA-calpain-6 interaction was explored by assessing its effect on angiogenesis in vitro. Whereas forced overexpression of calpain-6 increased the secretion of the VEGF protein and tube formation, knockdown of calpain-6 expression abrogated the calpain-6-mediated VEGF secretion and tube formation in HUVECs. Consistent with the domain mapping result, overexpressing calpain-6 without the VEGFA-interacting domain III (Gly321-Asp500) failed to increase the secretion of VEGF protein. Our results identify calpain-6, an unconventional non-proteolytic calpain, as a novel VEGFA-interacting protein and demonstrate that their interaction is necessary to enhance VEGF secretion. Thus, calpain-6 might be a potential molecular target for angiogenesis inhibition in many diseases.


Asunto(s)
Calpaína/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Calpaína/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Dominios Proteicos , Factor A de Crecimiento Endotelial Vascular/genética
13.
EBioMedicine ; 45: 393-407, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31303501

RESUMEN

BACKGROUND: Recent studies have revealed that vitamin D deficiency may increase the risk of Alzheimer's disease, and vitamin D supplementation may be effective strategy to ameliorate the neurodegenerative process in Alzheimer's disease patients. Paricalcitol (PAL), a low-calcemic vitamin D receptor agonist, is clinically used to treat secondary hyperparathyroidism. However, the potential application of PAL for treating neurodegenerative disorders remains unexplored. METHODS: The APP/PS1 mice were intraperitoneally injected with PAL or vehicle every other day for 15 weeks. The ß-amyloid (Aß) production was confirmed using immunostaining and enzyme linked immunosorbent assay. The underlying mechanism was verified by western blot and immunostaining in vivo and in vitro. FINDINGS: Long-term PAL treatment clearly reduced ß-amyloid (Aß) generation and neuronal loss in APP/PS1 transgenic mouse brains. PAL stimulated the expression of low-density lipoprotein receptor-related protein 1 (LRP1) possibly through inhibiting sterol regulatory element binding protein-2 (SREBP2); PAL also promoted LRP1-mediated ß-site APP cleavage enzyme 1 (BACE1) transport to late endosomes, thus increasing the lysosomal degradation of BACE1. Furthermore, PAL diminished 8-hydroxyguanosine (8-OHdG) generation in neuronal mitochondria via enhancing base excision repair (BER), resulting in the attenuation of calpain-1-mediated neuronal loss. INTERPRETATION: The present data demonstrate that PAL can reduce Aß generation through accelerating BACE1 lysosomal degradation and can inhibit neuronal loss through suppressing mitochondrial 8-OHdG generation. Hence, PAL might be a promising agent for treating Alzheimer's disease. FUND: This study was financially supported by the Natural Science Foundation of China (U1608282).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Ergocalciferoles/farmacología , Neuronas/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Calpaína/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lisosomas/efectos de los fármacos , Lisosomas/genética , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/patología , Oligopéptidos/genética , Presenilina-1/genética , Proteolisis/efectos de los fármacos
14.
J Agric Food Chem ; 66(38): 9952-9959, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30173511

RESUMEN

This study aimed to investigate the effects of creatine monohydrate (CMH) and guanidinoacetic acid (GAA) supplementation on the growth performance, meat quality, and creatine metabolism of finishing pigs. The pigs were randomly allocated to three treatment groups: the control group, CMH group, and GAA group. In comparison to the control group, CMH treatment increased average daily feed intake and GAA treatment increased average daily feed intake and average daily gain of pigs. In addition, CMH and GAA treatment increased pH45 min, myofibrillar protein solubility, and calpain 1 mRNA expression level and decreased the drip loss and shear force value in longissimus dorsi or semitendinosus muscle. Moreover, CMH and GAA supplementation increased the concentrations of creatine and phosphocreatine and the mRNA expressions of guanidinoacetate N-methyltransferase and creatine transporter in longissimus dorsi muscle, semitendinosus muscle, liver, or kidneys and decreased the mRNA expressions of arginine:glycine amidinotransferase in kidneys. In conclusion, CMH and GAA supplementation could improve the growth performance and meat quality and alter creatine metabolism of finishing pigs.


Asunto(s)
Alimentación Animal/análisis , Creatina/metabolismo , Glicina/análogos & derivados , Carne/análisis , Porcinos/metabolismo , Animales , Calpaína/genética , Calpaína/metabolismo , Creatina/análisis , Suplementos Dietéticos , Glicina/análisis , Glicina/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrollo
15.
Plant Physiol ; 172(4): 2204-2218, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27756823

RESUMEN

The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Calpaína/metabolismo , Pared Celular/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Calpaína/genética , Pared Celular/ultraestructura , Epítopos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Cinética , Modelos Biológicos , Pectinas/metabolismo , Fenotipo , Desarrollo de la Planta/genética , Epidermis de la Planta/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
J Clin Invest ; 126(9): 3417-32, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27525442

RESUMEN

Macrophages contribute to the development of atherosclerosis through pinocytotic deposition of native LDL-derived cholesterol in macrophages in the vascular wall. Inhibiting macrophage-mediated lipid deposition may have protective effects in atheroprone vasculature, and identifying mechanisms that potentiate this process may inform potential therapeutic interventions for atherosclerosis. Here, we report that dysregulation of exon junction complex-driven (EJC-driven) mRNA splicing confers hyperpinocytosis to macrophages during atherogenesis. Mechanistically, we determined that inflammatory cytokines induce an unconventional nonproteolytic calpain, calpain-6 (CAPN6), which associates with the essential EJC-loading factor CWC22 in the cytoplasm. This association disturbs the nuclear localization of CWC22, thereby suppressing the splicing of target genes, including those related to Rac1 signaling. CAPN6 deficiency in LDL receptor-deficient mice restored CWC22/EJC/Rac1 signaling, reduced pinocytotic deposition of native LDL in macrophages, and attenuated macrophage recruitment into the lesions, generating an atheroprotective phenotype in the aorta. In macrophages, the induction of CAPN6 in the atheroma interior limited macrophage movements, resulting in a decline in cell clearance from the lesions. Consistent with this finding, we observed that myeloid CAPN6 contributed to atherogenesis in a murine model of bone marrow transplantation. Furthermore, macrophages from advanced human atheromas exhibited increased CAPN6 induction and impaired CWC22 nuclear localization. Together, these results indicate that CAPN6 promotes atherogenicity in inflamed macrophages by disturbing CWC22/EJC systems.


Asunto(s)
Aterosclerosis/patología , Calpaína/fisiología , Macrófagos/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Precursores del ARN , Empalme del ARN , Adulto , Anciano , Anciano de 80 o más Años , Animales , Aorta/metabolismo , Aterosclerosis/genética , Trasplante de Médula Ósea , Calpaína/genética , Núcleo Celular/metabolismo , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Historia Antigua , Humanos , Inflamación , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Monocitos/citología , Neuropéptidos/metabolismo , Fenotipo , Pinocitosis , Placa Aterosclerótica/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
17.
Meat Sci ; 121: 375-381, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27427783

RESUMEN

This research aimed to evaluate the effects of the beta-agonist zilpaterol hydrochloride (ZH) on carcass traits, subprimal yield, meat quality, palatability traits, and gene expression in Nellore heifers. Zilpaterol increased Longissimus lumborum area and did not change back fat thickness, meat color, and cooking loss. Heifers fed ZH had greater hindquarter weight and carcass percentage. Muscles from hindquarter were heavier for animals fed ZH. Forequarter (% of carcass) decreased and brisket did not change with ZH supplementation. There were no differences between treatments for steak aroma, beef flavor, and off-flavor. However, tenderness and juiciness were reduced by ZH, depending on postmortem aging. Zilpaterol increased Calpain-1, Calpain-2, and calpastatin mRNA expression, with no effect of day of slaughter or ZH×Day interaction. In conclusion, ZH supplementation improved hypertrophy, meat production, and debone yield in Nellore heifers, which led to decreased tenderness and to increased mRNA expression in the calpain-calpastatin system.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Carne Roja , Compuestos de Trimetilsililo/farmacología , Animales , Proteínas de Unión al Calcio/genética , Calpaína/genética , Bovinos , Color , Comportamiento del Consumidor , Culinaria , Aditivos Alimentarios/farmacología , Calidad de los Alimentos , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , ARN Mensajero , Gusto
18.
J Biosci ; 40(1): 53-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25740141

RESUMEN

The effect of Sunphenon and Polyphenon 60 in oxidative stress response, myogenic regulatory factors, inflammatory cytokines, apoptotic and proteolytic pathways on H2O2-induced myotube atrophy was addressed. Cellular responses of H2O2-induced C2C12 cells were examined, including mRNA expression of myogenic regulatory factors, such as MyoD and myogenin, inflammatory pathways, such as TNF-α and NF-kB, as well as proteolytic enzymes, such as µ-calpain and m-calpain. The pre-treatment of Sunphenon (50 µg/mL)/Polyphenon 60 (50 µg/mL) on H2O2-treated C2C12 cells significantly down-regulated the mRNA expression of myogenin and MyoD when compared to those treated with H2O2-induced alone. Additionally, the mRNA expression of µ-calpain and m-calpain were significantly(p<0.05) increased in H2O2-treated C2C12 cells, whereas pre-treatment with Sunphenon/Polyphenon significantly down-regulated the above genes, namely µ-calpain and m-calpain. Furthermore, the mRNA expression of TNF-α and NF-kB were significantly increased in H2O2-treated C2C12 cells, while pre-treatment with Sunphenon (50 µg/mL)/Polyphenon 60 (50 µg/mL) significantly (p<0.05) down-regulated it when compared to the untreated control group.Subsequent analysis of DNA degeneration and caspase activation revealed that Sunphenon (50 µg/mL)/Polyphenon 60 (50 µg/mL) inhibited activation of caspase-3 and showed an inhibitory effect on DNA degradation. From this result, we know that, in stress conditions, µ-calpain may be involved in the muscle atrophy through the suppression of myogenin and MyoD. Moreover, Sunphenon may regulate the skeletal muscle genes/promote skeletal muscle recovery by the up-regulation of myogenin and MyoD and suppression of µ-calpain and inflammatory pathways and may regulate the apoptosis pathways. Our findings suggest that dietary supplementation of Sunphenon might reduce inflammatory events in muscle-associated diseases, such as myotube atrophy.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Animales , Calpaína/genética , Calpaína/metabolismo , Caspasa 3/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Inflamación/inmunología , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Toxicol Lett ; 233(1): 16-23, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25562542

RESUMEN

Carbon monoxide (CO) poisoning causes neuronal and glial apoptosis that can result in delayed neurological symptoms. The damage of brain cells can be prevented by oxygen therapy. Based on the central role of astrocytes in maintaining neuronal function and viability we investigated the toxic effects of 3000ppm CO in air followed by 24h of normoxia and evaluated the possible protective influence of 100% normobaric oxygen or 100% oxygen at a pressure of 3bar (hyperbaric) against CO poisoning in these cells. CO/normoxia caused a progressive decline of viability, increase in reactive oxygen species and decline of mitochondrial membrane potential and intracellular ATP levels in cultured rat astrocytes. Increased caspase-9, caspase-8 and calpain activity converged in activation of caspase-3/7. 1h treatment with oxygen disclosed pressure- and time-dependent efficacy in restoring astrocytic mitochondrial function and the prevention of apoptosis. The protective effect was most evident when the astrocytes were exposed to hyperbaric oxygen, but not normobaric oxygen, 1-5h after exposure to CO.


Asunto(s)
Astrocitos/metabolismo , Intoxicación por Monóxido de Carbono/terapia , Oxigenoterapia Hiperbárica , Animales , Apoptosis , Calpaína/genética , Calpaína/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Supervivencia Celular , Células Cultivadas , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Neuroglía , Ratas , Especies Reactivas de Oxígeno/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(51): E5527-36, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25512505

RESUMEN

CAPN3/p94/calpain-3, a calpain protease family member predominantly expressed in skeletal muscle, possesses unusually rapid and exhaustive autolytic activity. Mutations in the human CAPN3 gene impairing its protease functions cause limb-girdle muscular dystrophy type 2A (LGMD2A); yet, the connection between CAPN3's autolytic activity and the enzyme's function in vivo remain unclear. Here, we demonstrated that CAPN3 protease activity was reconstituted by intermolecular complementation (iMOC) between its two autolytic fragments. Furthermore, the activity of full-length CAPN3 active-site mutants was surprisingly rescued through iMOC with autolytic fragments containing WT amino acid sequences. These results provide evidence that WT CAPN3 can be formed by the iMOC of two different complementary CAPN3 mutants. The finding of iMOC-mediated restoration of calpain activity indicates a novel mechanism for the genotype-phenotype links in LGMD2A.


Asunto(s)
Calpaína/metabolismo , Proteínas Musculares/metabolismo , Animales , Células COS , Calpaína/química , Calpaína/genética , Chlorocebus aethiops , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutación , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA