Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Acta Vet Hung ; 72(1): 24-32, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38578702

RESUMEN

Feeding costs of farmed insects may be reduced by applying alternative nitrogen sources such as urea that can partly substitute true proteins. The aim of this study was to examine the effects of different nitrogen sources on body weight (BW) and survival rate (SR) of the Jamaican field cricket (JFC, Gryllus assimilis), the house cricket (HC, Acheta domesticus), yellow mealworm larvae (YM, Tenebrio molitor) and superworm larvae (SW, Zophobas morio). Crickets were either housed individually or in groups, and larvae were group-housed. Six isonitrogenous feeds composed of 3.52% nitrogen were designed for all four insect species using four independent replicates with micellar casein: urea proportions of 100-0%, 75-25%, 50-50%, 25-75%, 0-100% and 100% extracted soybean meal. All selected insect species were able to utilise urea. However, urea as the only nitrogen source resulted in low final BW. In the HC, the JFC, and the YM on nitrogen basis urea can replace 25% of micellar casein without having any negative effects on BW and SR in comparison to the 100% micellar casein group. In the SW, a 25% urea level did not have a significant effect on final BW, but SR decreased significantly.


Asunto(s)
Escarabajos , Gryllidae , Tenebrio , Animales , Caseínas/metabolismo , Insectos , Larva/metabolismo , Tenebrio/metabolismo , Peso Corporal , Nitrógeno , Suplementos Dietéticos
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38479791

RESUMEN

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Asunto(s)
Lactococcus lactis , Péptido Hidrolasas , Animales , Péptido Hidrolasas/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidasas/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
3.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38454851

RESUMEN

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Asunto(s)
Calostro , Glicoproteínas , Leche , Femenino , Embarazo , Lactante , Humanos , Animales , Calostro/metabolismo , Perilipina-2/metabolismo , Leche/metabolismo , Glucolípidos/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Leche/metabolismo , Caseínas/metabolismo
4.
Food Chem ; 448: 139054, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552465

RESUMEN

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Asunto(s)
Caseínas , Ácidos Grasos , Quercetina , Quercetina/química , Quercetina/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Caseínas/química , Caseínas/metabolismo , Estabilidad de Medicamentos , Disponibilidad Biológica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química , Grasas de la Dieta/metabolismo
5.
Food Res Int ; 176: 113845, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163735

RESUMEN

How different dietary fibers including pectin, cellulose and lignin affect casein digestibility was studied using in vitro static protocols. Peptides' profile, free amino acids (AAs) content, casein-DF interactions and their influences on enzymatic activities of proteolytic enzymes were studied using combined techniques. Under gastric and intestinal digestive conditions, while pectin could reduce casein digestibility (with an averaged decrease of 12.15% and 7.83, respectively) through both depletion flocculation and hydrogen-binding interactions, lignin inhibited the digestion of casein straightly through reducing the enzymatic activity of proteolytic enzymes, thereby altering the production of free AAs. Although cellulose showed the least detrimental effects, it still significantly reduced the content of Thr, Glu, Val, Leu, Phe, Lys, and no Arg was released. Deeper insight into casein-DF interactions and their influences on casein digestibility improves the development of more effective forms of DF for improving AA homeostasis in individuals.


Asunto(s)
Caseínas , Lignina , Humanos , Caseínas/metabolismo , Alimentación Animal/análisis , Digestión , Aminoácidos/metabolismo , Fibras de la Dieta/metabolismo , Celulosa/farmacología , Pectinas/farmacología , Péptido Hidrolasas/farmacología
6.
Br J Nutr ; 131(1): 17-26, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37485899

RESUMEN

Breast milk is known to contain bioactive peptides that are released during digestion, being a major source of bioactive peptides to the new-born, some of which act against invading pathogens. However, the formation of bioactive peptides during digestion of human colostrum remains largely uninvestigated. This study aimed to investigate the formation of peptides during simulated digestion of human colostrum from adult women and to prospect antimicrobial peptides. For this purpose, we used high-resolution MS to monitor the release of peptides during in vitro digestion. Bioinformatics was used for the prospection of antimicrobial activity of peptides. During simulated digestion (oral, gastric and duodenal phases), 2318 peptide sequences derived from 112 precursor proteins were identified. At the end of simulated digestion, casein-derived peptide sequences were the most frequently observed. Among precursors, some proteins were seen for the first time in this study. The resulting peptides were rich in proline, glutamine, valine and leucine residues, providing characteristic traits of antimicrobial peptides. From bioinformatics analysis, seven peptides showed potentially high antimicrobial activity towards bacteria, viruses and fungi, from which the latter was the most prominent predicted activity. Antimicrobial peptides released during digestion may provide a defence platform with controlled release for the new-born.


Asunto(s)
Antiinfecciosos , Calostro , Adulto , Embarazo , Humanos , Femenino , Proteolisis , Calostro/química , Espectrometría de Masas en Tándem , Péptidos/química , Leche Humana/metabolismo , Cromatografía Liquida , Caseínas/metabolismo , Péptidos Antimicrobianos , Proteómica/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/análisis , Antiinfecciosos/metabolismo , Digestión
7.
J Agric Food Chem ; 71(43): 16184-16193, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853551

RESUMEN

Leucine, a kind of branched-chain amino acid, plays a regulatory role in the milk production of mammalian mammary glands, but its regulatory functions and underlying molecular mechanisms remain unknown. This work showed that a leucine-enriched mixture (LEUem) supplementation increased the levels of milk protein and milk fat synthesis in primary bovine mammary epithelial cells (BMECs). RNA-seq of leucine-treated BMECs indicated alterations in lipid metabolism, translation, ribosomal structure and biogenesis, and inflammatory response signaling pathways. Meanwhile, the supplementation of leucine resulted in mTOR activation and increased the expression of BCKDHA, FASN, ACC, and SCD1. Interestingly, the expression of PPARα was independently correlated with the leucine-supplemented dose. PPARα activated by WY-14643 caused significant suppression of lipogenic genes expression. Furthermore, WY-14643 attenuated leucine-induced ß-casein synthesis and enhanced the level of BCKDHA expression. Moreover, promoter analysis revealed a peroxisome-proliferator-response element (PPRE) site in the bovine BCKDHA promoter, and WY-14643 promoted the recruitment of PPARα onto the BCKDHA promoter. Together, the present data indicate that leucine promotes the synthesis of ß-casein and fatty acid and that PPARα-involved leucine catabolism is the key target.


Asunto(s)
Caseínas , PPAR alfa , Bovinos , Animales , Caseínas/genética , Caseínas/metabolismo , Leucina/farmacología , Leucina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Glándulas Mamarias Animales/metabolismo , Ácidos Grasos/metabolismo , Células Epiteliales/metabolismo , Mamíferos/metabolismo
8.
Physiol Plant ; 175(4): e13973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37402155

RESUMEN

In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.


Asunto(s)
Nicotiana , Nitrógeno , Humanos , Nicotiana/metabolismo , Nitrógeno/metabolismo , Caseínas/metabolismo , Proteómica , Aminoácidos/metabolismo , Plantas/metabolismo , Péptido Hidrolasas/metabolismo
9.
Mar Drugs ; 21(6)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37367683

RESUMEN

Shell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products. However, we recently developed a microwave-intensified biorefinery that efficiently produced chitin, proteins/peptides, and minerals from lobster shells. Lobster minerals have a calcium-rich composition and biologically originated calcium is more biofunctional for use as a functional, dietary, or nutraceutical ingredient in many commercial products. This has suggested a further investigation of lobster minerals for commercial applications. In this study, the nutritional attributes, functional properties, nutraceutical effects, and cytotoxicity of lobster minerals were analyzed using in vitro simulated gastrointestinal digestion combined with growing bone (MG-63), skin (HaCaT), and macrophage (THP-1) cells. The calcium from the lobster minerals was found to be comparable to that of a commercial calcium supplement (CCS, 139 vs. 148 mg/g). In addition, beef incorporated with lobster minerals (2%, w/w) retained water better than that of casein and commercial calcium lactate (CCL, 21.1 vs. 15.1 and 13.3%), and the lobster mineral had a considerably higher oil binding capacity than its rivals (casein and CCL, 2.5 vs. 1.5 and 1.0 mL/g). Notably, the lobster mineral and its calcium were far more soluble than the CCS (98.4 vs. 18.6% for the products and 64.0 vs. 8.5% for their calcium) while the in vitro bioavailability of lobster calcium was 5.9-fold higher compared to that of the commercial product (11.95 vs. 1.99%). Furthermore, supplementing lobster minerals in media at ratios of 15%, 25%, and 35% (v/v) when growing cells did not induce any detectable changes in cell morphology and apoptosis. However, it had significant effects on cell growth and proliferation. The responses of cells after three days of culture supplemented with the lobster minerals, compared to the CCS supplementation, were significantly better with the bone cells (MG-63) and competitively quick with the skin cells (HaCaT). The cell growth reached 49.9-61.6% for the MG-63 and 42.9-53.4% for the HaCaT. Furthermore, the MG-63 and HaCaT cells proliferated considerably after seven days of incubation, reaching 100.3% for MG-63 and 115.9% for HaCaT with a lobster mineral supplementation of 15%. Macrophages (THP-1 cells) treated for 24 h with lobster minerals at concentrations of 1.24-2.89 mg/mL had no detectable changes in cell morphology while their viability was over 82.2%, far above the cytotoxicity threshold (<70%). All these results indicate that lobster minerals could be used as a source of functional or nutraceutical calcium for commercial products.


Asunto(s)
Calcio , Nephropidae , Animales , Bovinos , Calcio/metabolismo , Nephropidae/metabolismo , Caseínas/metabolismo , Disponibilidad Biológica , Solubilidad , Minerales , Quitina/metabolismo
10.
J Sci Food Agric ; 103(13): 6190-6197, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37139630

RESUMEN

BACKGROUND: Monascus pigments (Mps) are easily impacted by heating, pH and light, resulting in degradation. In this study, Mps were encapsulated by the ionic gelation method with sodium alginate (SA) and sodium caseinate (SC), as well as CaCl2 as a crosslinker. The encapsulated Mps SA/SC in four proportions (SA/SC: 1/4, 2/3, 3/2, 4/1, w/w). Then, the encapsulation efficiency and particle size of the SA/SC-Mps system were evaluated to obtain the optimal embedding conditions. Finally, the effects of heating, pH, light and storage on the stability of non-capsulated Mps and encapsulated Mps were assessed. RESULTS: SA/SC = 2/3 (AC2) had higher encapsulation efficiency (74.30%) of Mps and relatively small particle size (2.02 mm). The AC2 gel beads were chosen for further investigating the stability of encapsulated Mps to heating, pH, light and storage. Heat stability experiments showed that the degradation of Mps followed first-order kinetics, and the encapsulated Mps had lower degradation rates than non-capsulated Mps. Encapsulation could reduce the effect of pH on Mps. The effects of ultraviolet light on the stability of Mps were considered, and showed that the retention efficiency of encapsulated Mps was 22.01% higher than that of non-capsulated Mps on the seventh day. Finally, storage stability was also evaluated under dark refrigerated conditions for 30 days, and the results indicated that encapsulation could reduce the degradation of Mps. CONCLUSION: This study has proved that AC2 gel beads can improve the stability of Mps. Thus, the ionic gelation method is a promising encapsulation method to improve the stability of Mps. © 2023 Society of Chemical Industry.


Asunto(s)
Monascus , Monascus/metabolismo , Alginatos/metabolismo , Extractos Vegetales/metabolismo , Caseínas/metabolismo
11.
J Anim Sci ; 100(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222748

RESUMEN

Glucose has been demonstrated to affect milk protein synthesis in dairy cows. However, its potential mechanisms has not been thoroughly studied. The objective of this study was to investigate the effects of glucose availability on αS1-casein synthesis, glucose uptake, metabolism, and the expression of proteins involved in AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells (BMEC). BMEC were treated for 24 h with different concentrations of glucose (0, 7, 10.5, 14, 17.5, and 21 mM). The results showed that 10.5 and 14 mM glucose supply increased the expression of αS1-casein, glucose uptake, cellular ATP content, and the phosphorylation of mTOR and P70S6K, but repressed AMPK phosphorylation in BMEC. Compared with 10.5 and 14 mM glucose supply, 17.5 and 21 mM glucose decreased the expression of αS1-casein, P70S6K phosphorylation as well as the activity of hexokinase (HK) and pyruvate kinase (PK), but increased the activity of glucose-6-phosphate dehydrogenase (G6PD). These results indicate that 10.5 to 14 mM glucose supply is the proper range for αS1-casein synthesis, and the promotion effects may be related to the increase of glucose uptake, ATP content and the changes of key proteins' phosphorylation in AMPK/mTOR signaling pathway. However, the inhibition of the expression of αS1-casein by 17.5 and 21 mM glucose may be associated with the changes of key enzymes' activity involved in glucose metabolism.


Glucose play an important role in milk protein synthesis in dairy cows. But the effects of glucose availability on casein synthesis and its underlying mechanisms has not been thoroughly studied. To elucidate the underlying mechanisms of glucose availability affecting casein synthesis, the effects of glucose availability on αS1-casein synthesis, glucose uptake, metabolism, and the expression of proteins involved in AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells were measured. We found that the expression of αS1-casein increased with 10.5 and 14 mM glucose supplementation, which may be associated with the increase of glucose uptake, ATP content and the changes of key proteins' phosphorylation in AMPK/mTOR signaling pathway. The inhibition of αS1-casein expression with 17.5 and 21 mM glucose supplementation may be related to the changes of key enzymes' activity involved in glucose metabolism. This study provided an insight into the potential mechanisms of glucose availability affecting milk protein synthesis.


Asunto(s)
Caseínas , Glándulas Mamarias Animales , Femenino , Bovinos , Animales , Caseínas/metabolismo , Glándulas Mamarias Animales/metabolismo , Glucosa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Células Epiteliales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato , Mamíferos/metabolismo
12.
J Dairy Sci ; 105(11): 9226-9239, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175236

RESUMEN

We aimed to evaluate the incidence of unstable non-acid milk (UNAM) in cows fed either sugarcane or corn silage. Second, we aimed to evaluate the effect of daily variation (d 1 to 4) and alcohol grades (72, 78, and 80%) on UNAM incidence. The experiment was conducted as a split-plot crossover design, with 2 periods and 2 roughage types (sugarcane or corn silage). Thirteen multiparous Holstein cows with an average of 281 ± 29 d in milk were randomly distributed into 2 diets. Individual blood (analysis of total proteins, albumin, urea, calcium, phosphorus, magnesium, iron, chloride, glucose, and lactate) and milk samples (analysis of protein, fat, lactose and total solids, somatic cell count, and characterization of the protein profile) were collected during the last 4 d of each period. For UNAM identification, the alcohol test was conducted in milk samples at 4°C; specifically, if the sample presented the formation of clots, this would be noted as positive for UNAM. In addition, the Dornic acidity analysis was performed in the same samples to evaluate the true milk acidity. The use of sugarcane and higher degrees of alcohol were associated with increased UNAM. We observed no daily variation in UNAM. Nevertheless, we found no roughage type effect on the variables most commonly associated with UNAM, such as changes in salts in the casein micelle and, consequently, the zeta potential and the κ-casein (CN) fraction. The Pearson correlation analysis showed that the zeta potential and the concentrations of αS2-CN, blood ionic calcium, lactate, and glucose increased as the incidence of UNAM increased, showing a positive correlation among these variables. In contrast, the concentrations of lactose, phosphorus, and potassium decreased as UNAM increased, presenting a negative correlation. This study brought important discoveries to unveil why cows manifest UNAM. For instance, higher alcohol grades and cows fed with sugarcane had increased the incidence of UNAM. Additionally, animals with a higher incidence of UNAM (sugarcane-fed cows) were related to increased ionic calcium and glucose and changes in milk protein profile, with lower levels of BSA, ß-CN, and α-lactalbumin and greater αS1-CN content, all of which were correlated with UNAM. Nonetheless, this trial also provides evidence for the need for further studies to better understand the physiological mechanisms that directly affect the stability of milk protein.


Asunto(s)
Saccharum , Ensilaje , Femenino , Bovinos , Animales , Ensilaje/análisis , Zea mays/metabolismo , Saccharum/metabolismo , Caseínas/metabolismo , Lactosa/metabolismo , Lactancia/fisiología , Lactalbúmina/metabolismo , Micelas , Incidencia , Magnesio/metabolismo , Calcio/metabolismo , Sales (Química)/metabolismo , Cloruros/metabolismo , Grano Comestible/química , Proteínas de la Leche/análisis , Fósforo/metabolismo , Glucosa/metabolismo , Urea/metabolismo , Lactatos/análisis , Potasio/metabolismo , Hierro , Rumen/metabolismo
13.
Nutrients ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458186

RESUMEN

Human milk contains <50% less protein (casein) than cow milk, but is equally effective in insulin secretion despite lower postingestion hyperaminoacidemia. Such potency of human milk might be modulated either by incretins (glucagon-like polypeptide-1,GLP-1); glucose-inhibitory-polypeptide, GIP), and/or by milk casein content. Healthy volunteers of both sexes were fed iso-lactose loads of two low-protein milks, i.e., human [Hum] (n = 8) and casein-deprived cow milk (Cow [↓Cas]) (n = 10), as well as loads of two high-protein milks, i.e., cow (n = 7), and casein-added human-milk (Hum [↑Cas]) (n = 7). Plasma glucose, insulin, C-peptide, incretins and amino acid concentrations were measured for 240'. All milks induced the same transient hyperglycemia. The early [20'−30'] insulin and C-peptide responses were comparable among all milk types apart from the low-protein (Cow [↓Cas]) milk, where they were reduced by <50% (p < 0.05 vs. others). When comparing the two high-protein milks, GLP-1 and GIP [5'−20'] responses with the (Hum [↑Cas]) milk were lower (by ≈2−3 fold, p < 0.007 and p < 0.03 respectively) than those with cow milk, whereas incretin secretion was substantially similar. Plasma amino acid increments largely reflected the milk protein content. Thus, neither casein milk content, nor incretin or amino acid concentrations, can account for the specific potency of human milk on insulin secretion, which remains as yet unresolved.


Asunto(s)
Incretinas , Insulina , Aminoácidos , Animales , Glucemia/metabolismo , Péptido C , Caseínas/metabolismo , Bovinos , Femenino , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Humanos , Lactosa/análisis , Masculino , Leche/química , Adulto Joven
14.
J Dairy Sci ; 105(5): 3883-3895, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35221058

RESUMEN

Previous research has showed that nonproteolytic Levilactobacillus brevis 145 (L) in coculture with Streptococcus thermophilus 1275 (S), not Lactobacillus delbrueckii ssp. bulgaricus (Lbu), was able to produce γ-aminobutyric acid (GABA) during milk fermentation in the presence of monosodium glutamate (MSG). It was assumed that differences of casein hydrolysis patterns between Strep. thermophilus 1275 and L. bulgaricus caused the phenomenon. Moreover, the GABA content was low and residual MSG was high in SL-fermented milk. In our research, comparison of peptide profiles determined by liquid chromatography/tandem mass spectrometry showed that αS2-casein, ß-casein, and κ-casein degradation by L. bulgaricus and Strep. thermophilus varied. Importantly, the peptide number in the L and Lbu coculture group increased compared with the Lbu monoculture group, whereas the peptide number in the SL coculture group decreased in comparison with S monoculture group, suggesting that L. bulgaricus was not able to provide peptides for the growth of Lb. brevis 145. Furthermore, we found that after supplementation with cysteine (50 mg/L) during milk fermentation by SL, 10 g/L MSG was converted into 4.8 g/L GABA with a minimum level of residual MSG, viable cell counts of Lb. brevis and lactic acid production were increased, and the casein hydrolysis pattern was not influenced. Moreover, sulfhydryl group-containing chemicals including cystine, reduced glutathione, and oxidized glutathione showed effects similar to that of cysteine in improving GABA production. Finally, when L. bulgaricus YIB2 was combined with SL, supplementation of cysteine was also able to significantly improve GABA production.


Asunto(s)
Lactobacillus delbrueckii , Streptococcus thermophilus , Animales , Caseínas/metabolismo , Técnicas de Cocultivo/veterinaria , Cisteína , Fermentación , Lactobacillus delbrueckii/metabolismo , Péptidos/metabolismo , Glutamato de Sodio/metabolismo , Streptococcus thermophilus/metabolismo , Yogur , Ácido gamma-Aminobutírico
15.
Bioengineered ; 13(3): 5277-5291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35168476

RESUMEN

The current research aimed to verify the effects of erythropoietin (EPO) on vascular calcification under inflammatory conditions and the molecular regulator of vascular calcification induced by EPO. To induce vascular calcification and systemic chronic inflammation in SD rats, EPO was administered intraperitoneally, and 10% casein was injected subcutaneously. The administration period lasted for 20 consecutive weeks. Blood samples were subsequently collected to detect inflammatory factors and vascular calcification. Additionally, high-dose EPOs were applied to stimulate primary vascular smooth muscle cells (VSMCs), and vascular calcification was measured using alizarin red staining, alkaline phosphatase (ALP) activity, and calcium salt quantification. The probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) was employed to detect cellular reactive oxygen species (ROS) levels. The expressions of bone formation-related protein and anti-calcification protein matrix gla protein (MGP) were determined via Western blot. Compared with the control group, calcium deposits and vascular calcification were increased in the EPO group, tumor necrosis factor-alpha (TNF-α) group and TNF-α+ EPO group, whereas MGP was significantly reduced. Moreover, under the stimulation of TNF-α and EPO+TNF-α, pp38/p38 was increased substantially, the addition of p38 inhibitor SB203580 could significantly reduce calcium deposits and vascular calcification. In vivo experiment, compared with the EPO group, calcium salt deposition and vascular calcification were elevated in the EPO+casein group. The present results revealed that high-dose EPO could cause calcification of the abdominal aorta in rats. The inflammatory response aggravated the vascular calcification induced by EPO via activating p38 and ROS levels.


Asunto(s)
Eritropoyetina , Calcificación Vascular , Animales , Calcio/metabolismo , Caseínas/efectos adversos , Caseínas/metabolismo , Células Cultivadas , Eritropoyetina/efectos adversos , Eritropoyetina/metabolismo , Inflamación/metabolismo , Músculo Liso Vascular/patología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
16.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216344

RESUMEN

Phenylketonuria (PKU) is a rare autosomal recessive inborn error of metabolism where the mainstay of treatment is a Phe restricted diet consisting of a combination of limited amounts of natural protein with supplementation of Phe-free or low-Phe protein substitutes and special low protein foods. Suboptimal outcomes may be related to the different absorption kinetics of free AAs, which have lower biological efficacy than natural proteins. Physiomimic TechnologyTM is a technology engineered to prolong AA (AA-PT) release allowing physiological absorption and masking the odor and taste of free AAs. The aim of these studies was to assess the impact of AA-PT formulation on selected functional and metabolic parameters both in acute and long-term experimental studies. Adult rats in fasting conditions were randomized in different groups and treated by oral gavage. Acute AA-PT administration resulted in significantly lower BUN at 90 min versus baseline. Both BUN and glycemia were modulated in the same direction as intact casein protein. Long-term treatment with AA-PT significantly reduces the protein expression of the muscle degradation marker Bnip3L (-46%) while significantly increasing the proliferation of market myostatin (+58%). Animals dosed for 15 days with AA-PT had significantly stronger grip strength (+30%) versus baseline. In conclusion, the results suggest that the AA-PT formulation may have beneficial effects on both AA oxidation and catabolism with a direct impact on muscle as well as on other metabolic pathways.


Asunto(s)
Aminoácidos/metabolismo , Aminoácidos/farmacología , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Animales , Biomarcadores/metabolismo , Caseínas/metabolismo , Dieta con Restricción de Proteínas/métodos , Masculino , Proteínas de la Membrana/metabolismo , Miostatina/metabolismo , Ratas , Ratas Wistar
17.
Acta Neuropsychiatr ; 34(2): 69-76, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34666854

RESUMEN

BACKGROUND: The treatment of mania in bipolar disorders needs to be more efficient, as the manic condition creates severe problems for the patient when it comes to work, finances, relationships and health. This proof-of-concept study examines to what extent casein glycomacropeptide (CGMP) may reduce the precursors of dopamine, phenylalanine and tyrosine, in plasma, and therefore be a potential new intervention to treat acute manic episodes. METHOD: The study was designed as a double-blind randomised dose-response study of CGMP (with added leucine and tryptophan) in 15 healthy men, receiving 3 different doses of CGMP with an interval of at least 14 days. RESULTS: Administration of CGMP produced a dose-dependent depletion of plasma aromatic amino acids. The total area under the curve of plasma ratios of phenylalanine-tyrosine compared to the level of leucine-isoleucine-valine--tryptophan was CGMP (20 g): 3.648 [SE:0.3281]; CGMP (40 g): 2.368 [SE:0.1858]; and CGMP (60 g)1.887 [SE:0.2591]. A comparison of the groups showed a dose-dependent statistical difference, with a one-way ANOVA summary (Dunnett) F = 11.87, p = 0.0003, CGMP 20 g versus CGMP 40 g, p = 0.0042, CGMP 20 g versus CGMP 60 g, p = 0.0002. No significant side effects were observed. CONCLUSIONS: This study demonstrate CGMP is a well-tolerated and effective mixture, and that 60 g of CGMP produced the highest depletion of plasma aromatic amino acids (phenylalanine and tyrosine). The effect seems to be highest after 3-4 h. We therefore conclude that this dose should be the one considered for future studies involving CGMP in humans.


Asunto(s)
Caseínas , Triptófano , Caseínas/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Humanos , Leucina , Masculino , Fragmentos de Péptidos
18.
J Food Biochem ; 45(12): e14001, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34751452

RESUMEN

This study evaluated the stability of casein phosphopeptides (CPP) and obtained peptide-calcium complex by heating and chelating the peptide with CaCl2 in a neutral solution. To assess the bioavailability of various calcium formulations, the calcium transport models were established in Caco-2 cells, and the transcellular transport pathways of various calcium formulations were studied by RT-PCR and Western blotting. Results of circular dichroism showed that CPP was a stable polypeptide. The ultraviolet absorption spectrum and Fourier transform-infrared spectrum (FT-IR) indicated that calcium could be chelated by carboxyl oxygen and amino nitrogen atoms of CPP to form peptide calcium chelate, and the calcium bioavailability of peptide calcium chelate was significantly higher than that of CaCl2 , calcium l-aspartate, and casein phosphopeptides mixed with CaCl2 . Four calcium sources increased the expression of TRPV5 and TRPV6 genes and proteins. The study intended to provide a basis for developing a novel calcium supplement. PRACTICAL APPLICATIONS: This paper examined the bioavailability of casein phosphopeptides calcium complex, CaCl2 , calcium l-aspartate, and casein phosphopeptides mixed with CaCl2 in Caco-2 cells, and the mechanisms were detected by western blotting. The results provide theoretical knowledge for the selection of calcium supplement raw materials and lay a foundation for the development of compound calcium preparations and drugs in the future.


Asunto(s)
Caseínas , Fosfopéptidos , Células CACO-2 , Calcio , Caseínas/metabolismo , Humanos , Fosfopéptidos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Transcitosis
19.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575895

RESUMEN

For many years, the main nitrogen source for patients with phenylketonuria (PKU) was phenylalanine-free amino acid supplements. Recently, casein glycomacropeptide (GMP) supplements have been prescribed due to its functional and sensorial properties. Nevertheless, many doubts still persist about the metabolic effects of GMP compared to free amino acids (fAA) and intact proteins such as casein (CAS). We endeavour to compare, in rats, the metabolic effects of different nitrogen sources. Twenty-four male Wistar rats were fed equal energy density diets plus CAS (control, n = 8), fAA (n = 8) or GMP (n = 8) for 8 weeks. Food, liquid intake and body weight were measured weekly. Blood biochemical parameters and markers of glycidic metabolism were assessed. Glucagon-like peptide-1 (GLP-1) was analysed by ELISA and immunohistochemistry. Food intake was higher in rats fed CAS compared to fAA or GMP throughout the treatment period. Fluid intake was similar between rats fed fAA and GMP. Body weight was systematically lower in rats fed fAA and GMP compared to those fed CAS, and still, from week 4 onwards, there were differences between fAA and GMP. None of the treatments appeared to induce consistent changes in glycaemia, while insulin levels were significantly higher in GMP. Likewise, the production of GLP-1 was higher in rats fed GMP when compared to fAA. Decreased urea, total protein and triglycerides were seen both in fAA and GMP related to CAS. GMP also reduced albumin and triglycerides in comparison to CAS and fAA, respectively. The chronic consumption of the diets triggers different metabolic responses which may provide clues to further study potential underlying mechanisms.


Asunto(s)
Caseínas/metabolismo , Dietoterapia , Suplementos Dietéticos , Fragmentos de Péptidos/metabolismo , Animales , Biomarcadores , Peso Corporal , Caseínas/administración & dosificación , Ingestión de Alimentos , Glucosa/metabolismo , Humanos , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fragmentos de Péptidos/administración & dosificación , Ratas
20.
Sci Rep ; 11(1): 14501, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262119

RESUMEN

Cynara cardunculus L. or cardoon is a plant that is used as a source of milk clotting enzymes during traditional cheese manufacturing. This clotting activity is due to aspartic proteases (APs) found in the cardoon flower, named cyprosins and cardosins. APs from cardoon flowers display a great degree of heterogeneity, resulting in variable milk clotting activities and directly influencing the final product. Producing these APs using alternative platforms such as bacteria or yeast has proven challenging, which is hampering their implementation on an industrial scale. We have developed tobacco BY2 cell lines as an alternative plant-based platform for the production of cardosin B. These cultures successfully produced active cardosin B and a purification pipeline was developed to obtain isolated cardosin B. The enzyme displayed proteolytic activity towards milk caseins and milk clotting activity under standard cheese manufacturing conditions. We also identified an unprocessed form of cardosin B and further investigated its activation process. The use of protease-specific inhibitors suggested a possible role for a cysteine protease in cardosin B processing. Mass spectrometry analysis identified three cysteine proteases containing a granulin-domain as candidates for cardosin B processing. These findings suggest an interaction between these two groups of proteases and contribute to an understanding of the mechanisms behind the regulation and processing of plant APs. This work also paves the way for the use of tobacco BY2 cells as an alternative production system for active cardosins and represents an important advancement towards the industrial production of cardoon APs.


Asunto(s)
Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Animales , Ácido Aspártico Endopeptidasas/aislamiento & purificación , Caseínas/metabolismo , Proteasas de Cisteína/metabolismo , Concentración de Iones de Hidrógeno , Leche , Células Vegetales , Extractos Vegetales/química , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Nicotiana/citología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA