Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Food ; 27(6): 521-532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651680

RESUMEN

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Asunto(s)
Ratones Noqueados , Desarrollo de Músculos , Músculo Esquelético , PPAR delta , PPAR-beta , Extractos Vegetales , Ácido Quínico , Animales , Ratones , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Extractos Vegetales/farmacología , PPAR-beta/metabolismo , PPAR-beta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , PPAR delta/metabolismo , PPAR delta/genética , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteína MioD/metabolismo , Proteína MioD/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo
2.
J Ethnopharmacol ; 330: 118150, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631487

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: JiaWei DaChaiHu is composed of Bupleurum chinense, Scutellaria baicalensis, Pinellia ternata, Paeonia lactiflora, Zingiber officinaleRoscoe, Poncirus tuifoliata, Rheum palmatum L., Curcumae Radix, Herba Lysimachiae, Ziziphus. JiaWei DaChaiHu is one of the most common traditional Chinese medicines for the treatment of depression. AIM OF THE STUDY: The chronic unpredictable mild stress (CUMS) has been shown to promote atherosclerosis (AS). Dachaihu has been widely used in traditional Chinese medicine and has been known to exert distinct pharmacological effects. This investigation aims to examine the therapeutic effect of Jiawei Dachaihu extract on AS animal models with CUMS. METHODS: AS-CUMS mice model was established by Apoe-/- mice. Mice were treated with Jiawei Dachaihu. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C) levels were measured using ELISA kits. Aortic tissue pathologic changes detected by oil red O staining. Mice behavioral changes detected by sucrose preference test and sucrose preference test. The relative mRNA expression levels of CRH, ND1, and TFAM were determined by qRT-PCR. 5-HT1A, BDNF, LON, TFAM, PGC-1α, and SIRT1 protein expression determined by western blotting. ATP content detected by ATP kits. RESULTS: The treatment with Jiawei Dachaihu extract alleviated the veins plaque and reduced stress signs in vitro and in vivo. It increased the ATP and HDL-C levels while decreased the TC, TG, LDL-C levels. Jiawei Dachaihu extract treatment upregulated Lon, SIRT1, TFAM, PGC-1α, BDNF, and 5-HT1A protein expression and regained mitochondrial function. CONCLUSION: Jiawei Dachaihu extract could alleviate AS and reduce CUMS by upregulating the SIRT1/PGC-1α signaling and promoted its crosstalk with Lon protein to maintain mitochondrial stability.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Sirtuina 1 , Estrés Psicológico , Animales , Aterosclerosis/tratamiento farmacológico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Transducción de Señal/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Estrés Psicológico/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones Noqueados para ApoE
3.
Phytomedicine ; 129: 155633, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640859

RESUMEN

BACKGROUND: Doxorubicin (DOX) is an effective anticancer agent. However, the clinical outcomes of DOX-based therapies are severely hampered by their significant cardiotoxicity. PURPOSE: We investigated the beneficial effects of an ethanol extract of Cirsium setidens (CSE) on DOX-induced cardiomyotoxicity (DICT). METHODS: UPLC-TQ/MS analysis was used to identify CSE metabolite profiles. H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells were used to evaluate the effects of CSE on DICT-induced cell death. To elucidate the mechanism underlying it, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma co-activator l-alpha (PGC1-α), nuclear respiratory factor 1 (NRF1), NRF2, superoxide dismutase (SOD1), and SOD2 expression was detected using western blot analysis. The oxygen consumption rate (OCR), cellular ROS, and mitochondrial membrane potential were measured. Finally, we confirmed the cardioprotective effect of CSE against DICT in both C57BL/6 mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) by observing various parameters, such as electrophysiological changes, cardiac fibrosis, and cardiac cell death. RESULTS: Chlorogenic acid and nicotiflorin were the major compounds in CSE. Our data demonstrated that CSE blocked DOX-induced cell death of H9c2 cells without hindrance of its apoptotic effects on MDA-MB-231 cells. DOX-induced defects of OCR and mitochondrial membrane potential were recovered in a CSE through upregulation of the AMPK-PGC1-α-NRF1 signaling pathway. CSE accelerated NRF1 translocation to the nucleus, increased SOD activity, and consequently blocked apoptosis in H9c2 cells. In mice treated with 400 mg/kg CSE for 4 weeks, electrocardiogram data, creatine kinase and lactate dehydrogenase levels in the serum, and cardiac fibrosis, were improved. Moreover, various electrophysiological features indicative of cardiac function were significantly enhanced following the CSE treatment of hiPSCCMs. CONCLUSION: Our findings demonstrate CSE that ameliorates DICT by protecting mitochondrial dysfunction via the AMP- PGC1α-NRF1 axis, underscoring the therapeutic potential of CSE and its underlying molecular pathways, setting the stage for future investigations into its clinical applications.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cardiotoxicidad , Cirsium , Doxorrubicina , Miocitos Cardíacos , Extractos Vegetales , Animales , Humanos , Masculino , Ratones , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Línea Celular Tumoral , Cirsium/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
4.
Zhen Ci Yan Jiu ; 49(4): 349-357, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649202

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on activation of silent information regulator 1 (Sirt1)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)/mitochondrial transcription factor A (TFAM) pathway in type 2 diabetes (T2DM) rats with peripheral neuropathy (DPN) , so as to explore its possible mechanisms underlying improvement of DPN. METHODS: Thirty male SD rats were randomly divided into blank control group (n=8) and DPN model group (n=22) which were further divided into model group (n=8) and EA group (n=8) after successful modeling. The model of T2DM was established by high-fat diet and low-dose intraperitoneal injection of streptozocin (35 mg/kg). For rats of the EA group (anesthetized with isoflurane), EA stimulation (2 Hz/15 Hz, 2 mA) was applied to "Tianshu"(ST25) for 20 min, once daily, 6 times a week for 6 weeks. The blood glucose level, body weight, area under curve (AUC) of glucose tolerance test, and hind-paw mechanical pain threshold and thermal pain threshold were observed. The intra-epidermal nerve fiber density (IENFD) of the hind-foot pad was observed by immunofluorescence staining. The motor nerve conduction velocity (MNCV) of the sciatic nerve was measured by using electrophysiological method. H.E. staining was used to observe the histopathological changes of the sciatic nerve after modeling. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes of the sciatic nerve. The protein expressions of energy-related Sirt1, PGC-1α and TFAM in the sciatic nerve was detected by Western blot. RESULTS: Compared with the blank control group, the model group had a higher blood glucose contents and AUC (P<0.001), a slower MNCV (P<0.01), and a decrease in the body weight and in the mechanical and thermal pain thresholds (P<0.001) and IENFD (P<0.001), and in the expression levels of Sirt1, PGC-1α and TFAM (P<0.05, P<0.01). In contrast to the model group, the EA group had a decrease in the blood glucose contents and AUC (P<0.05, P<0.01), and an increase in mechanical and thermal pain thresholds, MNCV, IENFD, and expression levels of Sirt1, PGC-1α and TFAM proteins (P<0.01, P<0.05). In addition, results of histopathological and ultrastructural changes of the sciatic nerve showed more fragmented and disordered distribution of axons on the transverse section, and extensive separation of myelin and axons, uneven myelin thickness, axonal degeneration and irregular shape in the model group, whereas in the EA group, the axons on the transverse section were relatively more dense and more complete, the myelin sheath of the sciatic nerve was relatively uniform, and the axonal shape was relatively regular with relatively milder lesions. CONCLUSIONS: EA up-regulates the expressions of Sirt1, PGC-1α, TFAM in T2DM rats with DPN, which may be associated with its functions in improving and repairing the injured peripheral nerves in rats with DPN.


Asunto(s)
Puntos de Acupuntura , Diabetes Mellitus Tipo 2 , Electroacupuntura , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sirtuina 1 , Animales , Humanos , Masculino , Ratas , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/terapia , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Phytomedicine ; 129: 155534, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583346

RESUMEN

BACKGROUND: Severe respiratory system illness caused by influenza A virus infection is associated with excessive inflammation and abnormal apoptosis in alveolar epithelial cells (AEC). However, there are limited therapeutic options for influenza-associated lung inflammation and apoptosis. Pterostilbene (PTE, trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol that has been reported to limit influenza A virus infection by promoting antiviral innate immunity, but has not been studied for its protective effects on virus-associated inflammation and injury in AEC. PURPOSE: Our study aimed to investigate the protective effects and underlying mechanisms of PTE in modulating inflammation and apoptosis in AEC, as well as its effects on macrophage polarization during influenza virus infection. STUDY DESIGN AND METHODS: A murine model of influenza A virus-mediated acute lung injury was established by intranasal inoculation with 5LD50 of mouse-adapted H1N1 viruses. Hematoxylin and eosin staining, immunofluorescence, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, Luminex and flow cytometry were performed. RESULTS: PTE effectively mitigated lung histopathological changes and injury induced by H1N1 viruses in vivo. These beneficial effects of PTE were attributed to the suppression of inflammation and apoptosis in AEC, as well as the modulation of M1 macrophage polarization. Mechanistic investigations revealed that PTE activated the phosphorylated AMP-activated protein kinase alpha (P-AMPKα)/sirtui1 (Sirt1)/PPARγ coactivator 1-alpha (PGC1α) signal axis, leading to the inhibition of nuclear factor kappa-B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling induced by H1N1 viruses, thereby attenuating inflammation and apoptosis in AEC. PTE also forced activation of the P-AMPKα/Sirt1/PGC1α signal axis in RAW264.7 cells, counteracting the activation of phosphorylated signal transducer and activator of transcription 1 (P-STAT1) induced by H1N1 viruses and the augment of P-STAT1 activation in RAW264.7 cells with interferon-gamma (IFN-γ) pretreatment before viral infection, thereby reducing H1N1 virus-mediated M1 macrophage polarization as well as the enhancement of macrophages into M1 phenotypes elicited by IFN-γ pretreatment. Additionally, the promotion of the transition of macrophages towards the M2 phenotype by PTE was also related to activation of the P-AMPKα/Sirt1/PGC1α signal axis. Moreover, co-culturing non-infected AEC with H1N1 virus-infected RAW264.7 cells in the presence of PTE inhibited apoptosis and tight junction disruption, which was attributed to the suppression of pro-inflammatory mediators and pro-apoptotic factors in an AMPKα-dependent manner. CONCLUSION: In conclusion, our findings suggest that PTE may serve as a promising novel therapeutic option for treating influenza-associated lung injury. Its ability to suppress inflammation and apoptosis in AEC, modulate macrophage polarization, and preserve alveolar epithelial cell integrity highlights its potential as a therapeutic agent in influenza diseases.


Asunto(s)
Lesión Pulmonar Aguda , Apoptosis , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Sirtuina 1 , Estilbenos , Animales , Estilbenos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/virología , Ratones , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sirtuina 1/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Células RAW 264.7 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Macrófagos/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , FN-kappa B/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Femenino
6.
Cancer Immunol Res ; 12(6): 744-758, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38526128

RESUMEN

ω-3 polyunsaturated fatty acids (PUFA) are known to directly repress tumor development and progression. In this study, we explored whether docosahexaenoic acid (DHA), a type of ω-3 PUFA, had an immunomodulatory role in inhibiting tumor growth in immunocompetent mice. The number of natural killer (NK) cells but not the number of T or B cells was decreased by DHA supplementation in various tissues under physiologic conditions. Although the frequency and number of NK cells were comparable, IFNγ production by NK cells in both the spleen and lung was increased in DHA-supplemented mice in the mouse B16F10 melanoma tumor model. Single-cell RNA sequencing revealed that DHA promoted effector function and oxidative phosphorylation in NK cells but had no obvious effects on other immune cells. Using Rag2-/- mice and NK-cell depletion by PK136 antibody injection, we demonstrated that the suppression of B16F10 melanoma tumor growth in the lung by DHA supplementation was dependent mainly on NK cells. In vitro experiments showed that DHA directly enhanced IFNγ production, CD107a expression, and mitochondrial oxidative phosphorylation (OXPHOS) activity and slightly increased proliferator-activated receptor gamma coactivator-1α (PGC-1α) protein expression in NK cells. The PGC-1α inhibitor SR-18292 in vitro and NK cell-specific knockout of PGC-1α in mice reversed the antitumor effects of DHA. In summary, our findings broaden the current knowledge on how DHA supplementation protects against cancer growth from the perspective of immunomodulation by upregulating PGC-1α signaling-mediated mitochondrial OXPHOS activity in NK cells.


Asunto(s)
Ácidos Docosahexaenoicos , Células Asesinas Naturales , Melanoma Experimental , Animales , Ácidos Docosahexaenoicos/farmacología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Melanoma Experimental/inmunología , Melanoma Experimental/tratamiento farmacológico , Ratones Noqueados , Ratones Endogámicos C57BL , Interferón gamma/metabolismo , Línea Celular Tumoral , Ácidos Grasos Omega-3/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
7.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38509025

RESUMEN

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Asunto(s)
Supervivencia Celular , Cinnamomum , Peróxido de Hidrógeno , Queratinocitos , Potencial de la Membrana Mitocondrial , Mitocondrias , Mitofagia , Estrés Oxidativo , Extractos Vegetales , Especies Reactivas de Oxígeno , Humanos , Mitofagia/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/citología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Cinnamomum/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Hojas de la Planta/química , Antioxidantes/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Sirolimus/farmacología , Células HaCaT , Proteínas Quinasas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
8.
Biol Trace Elem Res ; 202(11): 5166-5176, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38305829

RESUMEN

High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1ß, and vascular endothelial growth factor (VEGF) in the CS + Se group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with HFCS consumption.


Asunto(s)
Jarabe de Maíz Alto en Fructosa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas Wistar , Selenio , Sirtuina 1 , Animales , Masculino , Selenio/farmacología , Sirtuina 1/metabolismo , Ratas , Jarabe de Maíz Alto en Fructosa/efectos adversos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Estrés Oxidativo/efectos de los fármacos
9.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198804

RESUMEN

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Asunto(s)
Síndrome Cardiorrenal , Emodina , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Emodina/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Apoptosis , Ratones Endogámicos C57BL
10.
J Nutr Biochem ; 124: 109537, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030047

RESUMEN

In this study, we investigated the protective effects of SM on skeletal muscle and brain damage by regulation of BDNF/PGC1α/irisin pathway via brain function related myokines in high-fat diet-induced OB mice. OB was induced by high-fat diet for 6 weeks. SM extract (SME) was administered with 200 mg/kg BW (LSM) and 500 mg/kg BW (HSM) by oral gavage every day for 12 weeks. Behavior tests such as grip strength, Y-maze, and passive avoidance test were conducted to analyze muscle and cognitive function. Histopathological changes in skeletal muscle and brain were examined by hematoxylin and eosin staining and the protein levels of biomarkers related to oxidative stress, inflammation, protein degradation, neuro-plasticity, and cell cycling were measured by western blot. SME regulated morphological changes (muscle cross-sectional area: 1.23%, 1.40%; density of neurons in hippocampus:1.74%, 1.73%) in T2DM mice. Importantly, SME supplementation significantly increased several muscle-derived myokines which might influence the expression of neuronal markers in OB mice (FGF21: 1.27%, 1.34%; PGC1α: 1.0%, 1.32%; IRISIN: 1.9%, 1.08%; BDNF: 1.35%, 1.23%). Accordingly, SME activated hippocampal neurotrophic factors including BDNF (1.0%, 1.2%) and its associated PGC1α/irisin pathway (PGC1α :1.1%, 1.1%; IRISIN:1.1%, 0.9%) significantly. This study demonstrated the possibliy that protective myokines increased by SME supplementation may contribute to neuro-protection in OB mice. Taken together, the current study suggests that SME can be used to prevent skeletal muscle and brain damage in OB by protecting against oxidative stress and inflammatin via modulation of the BDNF/PGC1α/irisin pathway in the therapeutic approach of obese patients.


Asunto(s)
Fibronectinas , Solanum melongena , Humanos , Ratones , Animales , Fibronectinas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Mioquinas , Ratones Obesos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Solanum melongena/metabolismo , Dieta Alta en Grasa/efectos adversos , Músculo Esquelético/metabolismo , Encéfalo/metabolismo , Suplementos Dietéticos
11.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38035937

RESUMEN

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Morus , Ratones , Animales , Tejido Adiposo Pardo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Morus/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Estudios Prospectivos , Transducción de Señal , Tejido Adiposo Blanco , Hojas de la Planta , Proteína Desacopladora 1/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
12.
Int J Biol Sci ; 19(15): 4898-4914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781506

RESUMEN

Skeletal muscle wasting related to aging or pathological conditions is critically associated with the increased incidence and prevalence of secondary diseases including cardiovascular diseases, metabolic syndromes, and chronic inflammations. Much effort is made to develop agents to enhance muscle metabolism and function. Inonotus obliquus (I. obliquus; IO) is a mushroom popularly called chaga and has been widely employed as a folk medicine for inflammation, cardiovascular diseases, diabetes, and cancer in Eastern Europe and Asia. However, its effect on muscle health has not been explored. Here, we aimed to investigate the beneficial effect of IO extract in muscle regeneration and metabolism. The treatment of IO in C2C12 myoblasts led to increased myogenic differentiation and alleviation of dexamethasone-induced myotube atrophy. Network pharmacological analysis using the identified specific chemical constituents of IO extracts predicted protein kinase B (AKT)-dependent mechanisms to promote myogenesis and muscle regeneration. Consistently, IO treatment resulted in the activation of AKT, which suppressed muscle-specific ubiquitin E3 ligases induced by dexamethasone. IO treatment in mice improved the regeneration of cardiotoxin-injured muscles accompanied by elevated proliferation and differentiation of muscle stem cells. Furthermore, it elevated the mitochondrial content and muscle oxidative metabolism accompanied by the induction of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α). Our current data suggest that IO is a promising natural agent in enhancing muscle regenerative capacity and oxidative metabolism thereby preventing muscle wasting.


Asunto(s)
Enfermedades Cardiovasculares , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Cardiovasculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Estrés Oxidativo , Dexametasona/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
13.
Phytomedicine ; 121: 155045, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742526

RESUMEN

BACKGROUND: Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE: The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS: Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS: ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION: These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.


Asunto(s)
Neoplasias Gástricas , Ratones , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Glucosa/metabolismo , Ácido Láctico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
14.
Phytomedicine ; 120: 155034, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611465

RESUMEN

BACKGROUND: Xinmai'an tablets are a compound Chinese medicine comprising six traditional Chinese medicines that have been clinically applied to treat cardiovascular diseases such as premature ventricular contractions for many years. However, pharmacological effects and underlying mechanisms of Xinmai'an tablet in protecting against myocardial ischemia-reperfusion injury (MIRI) were barely ever studied. PURPOSE: To investigate the cardioprotective properties of Xinmai'an tablet against MIRI and the underlying molecular mechanism in rats. METHODS: We initially established the UHPLC-QTRAP-MS/MS analysis method to ensure the controllable quality of Xinmai'an tablet. We further identified the cardioprotective effects of Xinmai'an tablet against MIRI using TTC staining, hematoxylin and eosin, echocardiography, the transmission electron microscope analysis, biochemical analysis, and ELISA. We then investigated whether the safeguarding effect of Xinmai'an tablet on MIRI model rats was related to AMPK/SIRT1/PGC-1α pathway via western blotting. RESULTS: Xinmai'an tablet decreased myocardial infarct size; ameliorated cardiac function; alleviated myocardial and mitochondrial damage; and suppressed oxidative stress injury, vascular endothelial damage, and apoptosis response in MIRI model rats. Mechanistically, our results showed that Xinmai'an tablet can dramatically activate the AMPK/SIRT1/PGC-1αpathway and subsequently diminish mitochondrial oxidative stress damage. This was evidenced by increased ATP, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase levels, upregulation of GLUT4, p-AMPK, SIRT1, and PGC-1α protein levels; and reduced GLUT1 protein level. CONCLUSION: To the knowledge of the author of this article, this study is the first report of Xinmai'an tablet attenuating MIRI, potentially associated with the activation of the AMPK/SIRT1/PGC-1α pathway and subsequent reduction of mitochondrial oxidative stress damage. These findings reveal a novel pharmacological effect and mechanism of action of Xinmai'an tablet and highlight a promising therapeutic drug for ischemic cardiovascular diseases.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Sirtuina 1/metabolismo , Espectrometría de Masas en Tándem , Mitocondrias , Transducción de Señal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
15.
J Transl Med ; 21(1): 503, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495991

RESUMEN

Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-ß-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.


Asunto(s)
Atrofia Muscular , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835539

RESUMEN

Irisin is a myokine synthesized by skeletal muscle, which performs key actions on whole-body metabolism. Previous studies have hypothesized a relationship between irisin and vitamin D, but the pathway has not been thoroughly investigated. The purpose of the study was to evaluate whether vitamin D supplementation affected irisin serum levels in a cohort of 19 postmenopausal women with primary hyperparathyroidism (PHPT) treated with cholecalciferol for six months. In parallel, to understand the possible link between vitamin D and irisin, we analyzed the expression of the irisin precursor, Fndc5, in the C2C12 myoblast cell line treated with a biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Our results demonstrate that vitamin D supplementation resulted in a significant increase in irisin serum levels (p = 0.031) in PHPT patients. In vitro, we show that vitamin D treatment on myoblasts enhanced Fndc5 mRNA after 48 h (p = 0.013), while it increased mRNAs of sirtuin 1 (Sirt1) (p = 0.041) and peroxisome proliferator-activated receptor γ coactivator 1α (Pgc1α) (p = 0.017) over a shorter time course. Overall, our data suggest that vitamin-D-induced modulation of Fndc5/irisin occurs through up-regulation of Sirt1, which together with Pgc1α, is an important regulator of numerous metabolic processes in skeletal muscle.


Asunto(s)
Colestanos , Fibronectinas , Humanos , Femenino , Fibronectinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismo
17.
Animal ; 17(3): 100714, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764015

RESUMEN

The thymus and spleen, the main reservoirs for T lymphocytes, modulate the innate immune response. Oxidative stress, excessive inflammation and abnormal pyroptosis can cause dysfunction of these organs. This study aimed to examine whether tryptophan supplementation can improve growth performance and mitochondrial function via the adenosine 5'-monophosphate-activated protein kinase (AMPK)/sirtuin1 (Sirt1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) signalling pathway and decrease pyroptosis via the nucleotidebinding oligomerisation domain-like receptor protein 3 (NLRP3)/caspase-1/gasderminD (GSDMD) signalling pathway in the spleen and thymus of piglets after lipopolysaccharide (LPS) challenge. Eighteen weaned piglets were allotted to three treatment groups: non-challenged control, LPS-challenged control and LPS + 0.2% tryptophan. On day 35, the pigs in the LPS and LPS + 0.2% tryptophan groups were injected with 100 µg/kg BW LPS, whereas those in the control group were administered with sterile saline. At 4 h postchallenge, the weaned piglets were sacrificed, and their thymuses and spleens were collected. Results showed that tryptophan enhanced growth performance and antioxidant status by increasing catalase, glutathione peroxidase and total superoxide dismutase activities and decreasing malondialdehyde and reactive oxygen species contents. Tryptophan also reduced the mRNA levels of proinflammatory cytokine genes and enhanced mitochondrial function by increasing the mRNA levels of mitochondrial transcription factor A, nuclear respiratory factor-1, mitochondria transcription factor B1, AMPKα1, AMPKα2, Sirt1 and PGC1α and the protein expression of phosphorylated AMPK, Sirt1 and PGC1α. It also reduced pyroptosis by decreasing the mRNA levels of NLRP3, apoptosis-associated speck-like protein containing CARD, caspase-1 and GSDMD and the protein expression of NLRP3, caspase-1 and GSDMD. These results indicate that tryptophan supplementation enhances growth performance and mitochondrial function via the AMPK/Sirt1/PGC1α signalling pathway and decreases pyroptosis via the NLRP3/caspase-1/GSDMD signalling pathway in the spleen and thymus of LPS-challenged piglets.


Asunto(s)
Lipopolisacáridos , Piroptosis , Porcinos , Animales , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Triptófano/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Bazo/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Adenosina Monofosfato/metabolismo , Suplementos Dietéticos , Mitocondrias/metabolismo , ARN Mensajero/metabolismo , Caspasas/metabolismo
18.
Nutr Res ; 110: 1-13, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36638746

RESUMEN

Lespedeza bicolor (LB) is known to have antidiabetic activities; however, the underlying molecular mechanisms of LB in hyperglycemia-induced skeletal muscle damage is unclear. Inflammation and oxidative stress caused by type 2 diabetes mellitus (T2DM) not only contributes to insulin resistance, but also promotes muscle atrophy via decreased muscle protein synthesis and increased protein degradation, leading to frailty and sarcopenia. In this study, we hypothesized that LB extract (LBE) supplementatin has an ameliorative effect on hyperglycemia-induced skeletal muscle damage by activation of 5' adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)/proliferator-activated receptor γ coactivator 1α (PGC1α)-associated energy metabolism in mice with T2DM. Diabetes was induced by a high-fat diet with a 2-time streptozotoxin injection (30 mg/kg body weight) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose level ≥140 mg/dL), the mice were administered with LBE at a low dose (100 mg/kg/d) or high dose (250 mg/kg/d) by gavage for 12 weeks. LBE supplementation ameliorated glucose tolerance and hemoglobin A1c (%) in mice with T2DM. Moreover, LBE supplementation upregulated protein levels of insulin receptor subunit-1 and Akt accompanied by increased translocation of glucose transporter 4 in mice with T2DM. Furthermore, LBE increased mitochondrial biogenesis by activating SIRT1, SIRT3, SIRT4, and peroxisome PGC1α in diabetic skeletal muscle. Meanwhile, LBE supplementation reduced oxidative stress and inflammation in mice with T2DM. Taken together, the current study suggested that LBE could be a potential therapeutic to prevent skeletal muscle damage by regulation AMPK/SIRT/PGC1α-related energy metabolism in T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Lespedeza , Extractos Vegetales , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Dietéticos , Metabolismo Energético , Hiperglucemia/metabolismo , Lespedeza/química , Ratones Endogámicos C57BL , Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Extractos Vegetales/farmacología
19.
J Med Food ; 26(1): 74-79, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36637439

RESUMEN

The beneficial effects of sodium butyrate (NaB) and sodium propionate (NaP) on fatty acid oxidation (FAO) genes and production of proinflammatory cytokines related to nonalcoholic fatty liver disease (NAFLD) were evaluated using HepG2 human liver hepatocellular carcinoma cells exposed to palmitate/oleate or lipopolysaccharides (LPSs) as a model. The results showed that NaP or NaB was able to promote FAO, regulate lipolysis, and reduce reactive oxygen species production by significantly increasing the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase 1 alpha (CPT1α), fibroblast growth factor 21 (FGF21), and uncoupling protein 2 (UCP2) in HepG2 cells. Together, NaP and NaB may produce greater effects by increasing CPT1α, PPARα, and UCP2 mRNA expression in LPS-treated HepG2 cells and by increasing CPT1α and ATGL mRNA expression in palmitate-/oleate-treated HepG2 cells. Only NaP treatment significantly increased FGF21 mRNA expression in palmitate-/oleate-treated HepG2 cells. The enzyme-linked immunosorbent assay results revealed that only pretreatment with LPSs and not palmitate/oleate significantly increased tumor necrosis factor alpha (TNF-α) expression in HepG2 cells. NaP alone or in combination with NaB significantly decreased TNF-α expression in LPS-induced HepG2 cells. The expression of interleukin-8 in both models showed no significant differences in all treatments. NaP and NaB show potential for in vivo studies on NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Butírico/farmacología , Células Hep G2 , Ácido Oléico , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Lipopolisacáridos , Estrés Oxidativo , ARN Mensajero/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
20.
J Ethnopharmacol ; 303: 115782, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36198376

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: "Qi deficiency-blood stasis-water retention syndrome" was the most frequent syndrome among heart failure(HF) patients according to Traditional Chinese Medicine (TCM) theory. Xinfuli Granule (XG) was constructed on the basis of classical formula "Baoyuan decoction" to enhance the function of nourishing Qi, activating blood and removing water retention. XG treatment has obtained clinical effect on HF patients. AIM OF THE STUDY: The regulation of XG on energy metabolism of HF was investigated with special focus on endoplasmic reticulum stress (ERS) and mitochondrial function. MATERIALS AND METHODS: Components of XG was acquired by UPLC/Q-TOF-MS Analysis, left anterior descending ligation(LAD)-induced HF rats model and hypoxia-ischemia(H-I)-induced H9c2 cells model were constructed to evaluate the effect of XG treatment. Cardiac function was evaluated by echocardiographic parameters, energy metabolism was evaluated by metabolites and ATP/ADP/AMP levels in blood samples, cardiomyocyte morphology and myocardial fibrosis were assessed by HE staining and Masson staining, mitochondrial ultrastructure was observed under Transmission Electron Microscope, viability and apoptosis rate of H9c2 cells was detected by cell counting kit-8 reaction and flow cytometry analysis, respectively. Mitochondrial membrane potential (MMP) of H9c2 cells was observed by JC-1 kit under fluorescent microscope, expression of peroxisome-proliferator-activated receptor (PPAR)-coactivator (PGC1α), ERS-related genes and RHOA/ROCK pathway were analysed by Quantitative Real-time PCR (RT-qPCR) and Western Blot. RESULTS: Here, we showed that XG alleviated cardiac metabolic remodeling and stimulated ATP production through elevated expression of PGC1α in HF rats. XG also helped recover mitochondrial deformation and decrease apoptosis rate accompanied by an increase of the Bcl2/Bax ratio and the mitochondrial membrane potential in hypoxia-ischemia (H-I) H9c2 cells. In addition, we found that XG downregulated ERS-related proteins ATF4, CHOP, Phospho-eIF2α, and Phospho-PERK, and suppressed the RHOA/ROCK pathway, which served as a potential mediator of ERS. CONCLUSIONS: we found that XG improved energy production by alleviating mitochondrial injury and inhibiting ERS in heart failures mediated by the RHOA/ROCK pathway.


Asunto(s)
Insuficiencia Cardíaca , Ratas , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Apoptosis , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico , Hipoxia/metabolismo , Adenosina Trifosfato/metabolismo , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA