Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611863

RESUMEN

Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.


Asunto(s)
Dalbergia , Aceites Volátiles , Masculino , Humanos , Femenino , Sonido , Ansiedad , Electroencefalografía , Aceites Volátiles/farmacología
2.
J Chromatogr A ; 1722: 464852, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581974

RESUMEN

Xiangdan Injection are commonly used traditional Chinese medicine formulations for the clinical treatment of cardiovascular diseases. However, the trace components of Dalbergia odorifera in Xiangdan Injection pose a challenge for evaluating its quality due to the difficulty of detection. This study proposes a technology combining dispersive liquid-liquid microextraction and back-extraction (DLLME-BE) along with Bar-Form-Diagram (BFD) to address this issue. The proposed combination method involves vortex-mixing tetradecane, which has a lower density than water, with the sample solution to facilitate the transfer of the target components. Subsequently, a new vortex-assisted liquid-liquid extraction step is performed to enrich the components of Dalbergia odorifera in acetonitrile. The sample analysis was performed on HPLC-DAD, and a clear overview of the chemical composition was obtained by integrating spectral and chromatographic information using BFD. The combination of BFD and CRITIC-TOPSIS strategies was used to optimize the process parameters of DLLME-BE. The determined optimal sample pre-treatment process parameters were as follows: 200 µL extraction solvent, 60 s extraction time, 50 µL back-extraction solvent, and 90 s back-extraction time. Based on the above strategy, a total of 29 trace components, including trans-nerolidol, were detected in the Xiangdan Injection. This combination technology provides valuable guidance for the enrichment analysis of trace components in traditional Chinese medicines.


Asunto(s)
Dalbergia , Medicamentos Herbarios Chinos , Microextracción en Fase Líquida , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Dalbergia/química , Límite de Detección , Acetonitrilos/química , Reproducibilidad de los Resultados
3.
J Pharm Biomed Anal ; 242: 116017, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387125

RESUMEN

Dalbergia odorifera (DO) is a precious rosewood species in Southern Asia, and its heartwood is used in China as an official plant for invigorating blood circulation and eliminating stasis. This study aims to evaluate the efficacy of DO on atherosclerosis (AS), and further explore its active components and potential mechanisms. The apolipoprotein-E (ApoE)-deficient mice fed a high-fat diet were used as model animals, and the pathological changes in mice with or without DO treatment were compared to evaluate the pharmacodynamics of DO on AS. The mechanisms were preliminarily expounded by combining with metabolomics and network pharmacology. Moreover, the bioactive components and targets were assessed by cell experiments and molecular docking, respectively. Our findings suggested that DO significantly modulated blood lipid levels and alleviated intimal hyperplasia in atherosclerotic-lesioned mice, and the mechanisms may involve the regulation of 18 metabolites that changed during the progression of AS, thus affecting 3 major metabolic pathways and 3 major signaling pathways. Moreover, the interactions between 16 compounds with anti-proliferative effect and hub targets in the 3 signaling pathways were verified using molecular docking. Collectively, our findings preliminarily support the therapeutic effect of DO in atherosclerosis, meanwhile explore the active constituents and potential pharmacological mechanisms, which is conducive to its reasonable exploitation and utilization.


Asunto(s)
Aterosclerosis , Dalbergia , Medicamentos Herbarios Chinos , Animales , Ratones , Simulación del Acoplamiento Molecular , Farmacología en Red , Aterosclerosis/tratamiento farmacológico , Apolipoproteínas E , Metabolómica
4.
Sci Rep ; 14(1): 73, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167560

RESUMEN

Belonging to the Fabaceae family, Dalbergia sissoo, a versatile plant, has gained prominence for its potent medicinal attributes, especially antipyretic, anti-inflammatory, and cardioprotective properties, as well as the use of its leaf juice in cancer treatment. Despite these recognized applications by natives and tribals, comprehensive insight into its biological activities and chemical composition remains limited. This study aimed to explore the cytotoxic potential of sequentially extracted leaf extracts from Dalbergia sissoo using various solvents, aiming to unveil the array of phytochemicals through LC-MS profiling. Among the extracts evaluated, the extract employing methanol:water extracting media (HN-2) appeared with the most remarkable results in both phytochemical diversity and biological activity. Furthermore, in vitro results of HN-2's in vitro anticancer efficacy were confirmed through in silico molecular docking and molecular dynamics simulation. These analyses demonstrated its ability to inhibit C-ABL kinase within leukemia K562 cells, directing that Dalbergia sissoo leaves serve as a bioactive agent reservoir. Consequently, this suggests that the Dalbergia sissoo plant is a potential source of bioactive compounds that can be used as a precursor for developing new cancer inhibitors, mainly targeting leukemia.


Asunto(s)
Antineoplásicos , Dalbergia , Leucemia , Extractos Vegetales/farmacología , Extractos Vegetales/química , Dalbergia/química , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Hojas de la Planta , Fitoquímicos
5.
Molecules ; 28(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005357

RESUMEN

Dalbergia odorifera T. Chen is traditionally referred to as "Dalbergiae Odoriferae Lignum" in traditional Chinese medicine. Its quality is typically assessed subjectively based on colour and texture observations and lacks a universal grading system. Our objective was to establish a relationship between heartwood colour and the content of key constituents, including total flavonoids, six specific flavonoids, alcohol-soluble extracts, and volatile oils, to assess their impact on heartwood quality. Substantial correlations were observed between the colour depth (L*), red-green direction (a*), and yellow-blue direction (b*), as well as the content of the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. Specifically, a* was correlated with the extract, total flavonoids, and isoliquiritigenin, whereas b* was correlated with the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. The results suggested that L*, b*, and chemical composition indices, such as extract, volatile oil, total flavonoids, and naringenin, could serve as primary criteria for classifying the quality of medicinal materials. This is consistent with market classification based on colour and texture, which facilitates material identification and guides the cultivation, harvesting, and processing of D. odorifera. This study provides a scientific foundation for its future development and use.


Asunto(s)
Dalbergia , Medicamentos Herbarios Chinos , Aceites Volátiles , Color , Flavonoides/química , Dalbergia/química
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569814

RESUMEN

R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.


Asunto(s)
Dalbergia , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Dalbergia/genética , Genes myb , Filogenia , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Fitoterapia ; 170: 105663, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652268

RESUMEN

A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.


Asunto(s)
Dalbergia , Estructura Molecular , Dalbergia/química , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética
8.
J Ethnopharmacol ; 317: 116872, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37393027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dalbergia pinnata, as a natural and ethnic medicine in China, has been used for burns and wounds with a long history, which has the effect of invigorating blood and astringent sores. However, there were no reports on the advantage activity of burns. AIM OF STUDY: The purpose of this study was to screen out the best active extract part of Dalbergia pinnata and investigate its therapeutic effect on wound healing and scar resolution. MATERIALS AND METHODS: Rat burn model was established and the healing effects of extracts from Dalbergia pinnata on burn wounds were evaluated by the percentage of wound contraction and period of epithelialization. Histological observation, immunohistochemistry, immunofluorescence and ELISA were used for the examination of inflammatory factors, TGF-ß1, neovascularization and collagen fibers through the period of epithelialization. In addition, the effect of the optimal extraction site on fibroblast cells was evaluated by cell proliferation and cell migration assays. The extracts of Dalbergia pinnata were analyzed by UPLC-Q/TOF-MS or GC-MS technique. RESULTS: Compared to the model group, there were better wound healing, suppressed inflammatory factors, more neovascularization as well as newly formed collagen in the ethyl acetate extract (EAE) and petroleum ether extract (PEE) treatment groups. The ratio of Collagen I and Collagen III was lower in the EAE and PEE treatment groups, suggesting a potential for reduced scarring. Furthermore, EAE and PEE could repair wounds by up-regulating TGF-ß1 in the early stage of wound repair and down-regulating TGF-ß1 in the late stage. In vitro studies showed that both EAE and PEE were able to promote NIH/3T3 cells proliferation and migration compared with the control group. CONCLUSIONS: In this study, EAE and PEE were found to significantly accelerate wound repair and might have an inhibitory effect on the generation of scars. It was also hypothesized that the mechanism might be related to the regulation of TGF-ß1 secretion. This study provided an experimental basis for the development of topical drugs for the treatment of burns with Dalbergia pinnata.


Asunto(s)
Quemaduras , Dalbergia , Ratones , Ratas , Animales , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Cicatrización de Heridas , Factor de Crecimiento Transformador beta1/farmacología , Colágeno , Quemaduras/tratamiento farmacológico
9.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1043-1053, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872275

RESUMEN

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


Asunto(s)
Dalbergia , Lesiones Cardíacas , Isquemia Miocárdica , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Metabolómica , Corazón , Forma MB de la Creatina-Quinasa
10.
Nat Prod Res ; 37(6): 928-935, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35822397

RESUMEN

Two pairs of flavonoid enantiomers (1a/1b and 2a/2b) together with three known analogues (3-5) were isolated from the heartwood of Dalbergia odorifera T. Chen. Their structures were elucidated by extensive spectroscopic analysis (1 D and 2 D NMR, UV, IR, and HRMS) and experimental and calculated ECD data. Compound 2 features an unusual 2-methyl-3(2H)-furanone moiety forming the C-ring of flavonoid, and its putative biosynthetic pathway is also proposed. Compounds 3‒5 exhibited significant inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells with IC50 values of 14.7 ± 0.3 µM, 40.2 ± 1.1 µM, and 3.2 ± 0.1 µM, respectively.


Asunto(s)
Dalbergia , Flavonoides , Ratones , Animales , Flavonoides/farmacología , Flavonoides/química , Dalbergia/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Células RAW 264.7
11.
Nat Prod Res ; 37(14): 2383-2389, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35300550

RESUMEN

Two new isoflavone compounds, Dalhancei A (1) and Dalhancei B (2), along with a known compound epicatechin (3) were isolated from 80% methanol extract of the barks of Dalbergia hancei Benth. The structures of compounds 1-3 were elucidated by comparison with the literature and physical data analysis, including optical rotation, MS, 1D and 2D NMR spectra. Compounds 1 and 2 showed weak inhibitory activity against tyrosinase at 16.22 mmol/L, with inhibition rates of 42.23 ± 0.18% and 45.68 ± 0.17%, respectively; compound 1 exhibited weak inhibitory activity against α-glucosidase with the inhibition rate of 43.72 ± 0.22% at 5.41 mmol/L, compounds 2 and 3 had better α-glucosidase inhibitory activity than compound 1 with IC50 values of 0.90 ± 0.18 and 0.41 ± 0.17 mmol/L, respectively.


Asunto(s)
Dalbergia , Isoflavonas , Dalbergia/química , Estructura Molecular , Isoflavonas/farmacología , Isoflavonas/química , alfa-Glucosidasas , Extractos Vegetales/farmacología , Extractos Vegetales/química
12.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500279

RESUMEN

In this study, cerium oxide nanorods (CeO2-NRs) were synthesized by using the phytochemicals present in the Dalbergia sissoo extract. The physiochemical characteristics of the as-prepared CeO2-NRs were investigated by using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The SEM and UV-VIS analyses revealed that the acquired nanomaterials possessed a rod-like morphology while the XRD results further confirmed that the synthesized NRs exhibited a cubic crystal lattice system. The antioxidant capacity of the synthesized CeO2-NRs was investigated by using several in vitro biochemical assays. It was observed that the synthesized NRs exhibited better antioxidant potential in comparison to the industrial antioxidant of the butylated hydroxyanisole (BHA) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biochemical assays, including lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase activity (CAT), were also performed in the human lymphocytes incubated with the CeO2-NRs to investigate the impact of the NRs on these oxidative biomarkers. Enhanced reductive capabilities were observed in all the assays, revealing that the NRs possess excellent antioxidant properties. Moreover, the cytotoxic potential of the CeO2-NRs was also investigated with the MTT assay. The CeO2-NRs were found to effectively kill off the cancerous cells (MCF-7 human breast cancer cell line), further indicating that the synthesized NRs exhibit anticancer potential as well. One of the major applications studied for the prepared CeO2-NRs was performing the statistical optimization of the photocatalytic degradation reaction of the methyl orange (MO) dye. The reaction was optimized by using the technique of response surface methodology (RSM). This advanced approach facilitates the development of the predictive model on the basis of central composite design (CCD) for this degradation reaction. The maximum degradation of 99.31% was achieved at the experimental optimized conditions, which corresponded rather well with the predicted percentage degradation values of 99.58%. These results indicate that the developed predictive model can effectively explain the performed experimental reaction. To conclude, the CeO2-NRs exhibited excellent results for multiple applications.


Asunto(s)
Cerio , Dalbergia , Humanos , Antioxidantes/farmacología , Difracción de Rayos X , Cerio/farmacología , Cerio/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432077

RESUMEN

The purpose of this study was to characterize and quantify the chemical constituents of heartwood and sapwood of Dalbergia oliveri extract in order to investigate the chemical components that determine the formation of heartwood's color. In this work, the types of pigments in heartwood and sapwood extract were analyzed using UV-Visible (UV) Spectrophotometer, and the main pigment components of heartwood and sapwood extract were identified and quantified using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). The results showed that the difference in content of the main components between heartwood and sapwood of Dalbergia oliveri was slight, and the lignin structure between heartwood and sapwood is basically identical; flavonoid pigments were found to be the primary chromophoric components of heartwood and sapwood extract. However, a total of 21 flavonoids were identified in heartwood and sapwood, of which the unique substances to heartwood were vitexin, isorhamnetin, and pelargonidin, and the content of isoliquiritigenin, formononetin, and biochanin A were 253, 37, and 583 times higher in the heartwood than in the sapwood, respectively, which could be the main pigment components affecting the significant color difference between heartwood and sapwood of Dalbergia oliveri. These results will provide a foundation for revealing the underlying mechanism of color difference between heartwood and sapwood and provide a theoretical basis for wood coloring.


Asunto(s)
Dalbergia , Madera , Flavonoides/análisis , Lignina/análisis , Extractos Vegetales/análisis , Madera/química
14.
Analyst ; 147(21): 4857-4865, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36149381

RESUMEN

Hongmu, a Chinese customary noun representing 29 kinds of wood species such as some Pterocarpus species (abbreviated as spp. hereinafter), Dalbergia spp. and Diospyros spp., is popular among Chinese people due to the furniture made from it. The slow regeneration of hongmu resources led to a decline in production, making hongmu prices high and illegal businesses profit from it. Therefore, it is necessary to identify and distinguish different varieties of hongmu for commercial trade. Herein, a cost-effective and rapid methodology was first developed via atmospheric pressure glow discharge mass spectrometry (APGD-MS) to classify three Dalbergia spp. and three Pterocarpus spp. Meanwhile, principal component analysis (PCA) was further applied to distinguish wood species and six kinds of hongmu extracts were able to be approximately separated into six units. Besides, hongmu could be clearly distinguished from their counterfeits, such as Guibourtia spp., using the method provided here. This method may provide a timely and necessary way for the determination of ingredients and identification of the authenticity of hongmu.


Asunto(s)
Presión Atmosférica , Dalbergia , Humanos , Espectrometría de Masas/métodos , Madera/química , Extractos Vegetales/análisis
15.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4959-4965, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164905

RESUMEN

Twelve flavonoids were isolated and purified from the ethyl acetate fraction of 95% ethanol extract of Dalbergia odorifera by heat reflux extraction, solvent extraction, recrystallization, normal phase silica gel, Sephadex LH-20, MCI gel and HPLC methods. The structures were identified with multiple spectroscopic methods, including 1 D-NMR, 2 D-NMR and MS. The compounds were identified as 6,7,8-trimethoxy-5,4'-dihydroxy isoflavone(1), medicarpin(2), 7,2'-dihydroxy-4'-methoxy-isoflavanol(3), biochanin A(4), prunetin(5), genistein(6), pratensein(7), 3-(4-hydroxyphenyl)-6-isopentenyl-7-methoxy-4H-chromen-4-one(8), tectorigenin(9), irisolidone(10), vestitol(11), and formononetin(12). Compound 1 was a new isoflavone, and compound 8 was isolated from D. odorifera for the first time. The results showed that compounds 1-3 had inhibitory effects on tyrosinase, with inhibition rates of 35.58%, 38.63% and 51.34% at the concentration of 1.0 mmol·L~(-1), respectively.


Asunto(s)
Dalbergia , Isoflavonas , Dalbergia/química , Etanol , Flavonoides/química , Genisteína , Isoflavonas/química , Isoflavonas/farmacología , Monofenol Monooxigenasa , Extractos Vegetales/química , Extractos Vegetales/farmacología , Gel de Sílice , Solventes
16.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889386

RESUMEN

Hypertension is a risk factor for cardiovascular diseases, which are the main cause of morbidity and mortality in the world. In the search for new molecules capable of targeting KCa1.1 and CaV1.2 channels, the expression of which is altered in hypertension, the in vitro vascular effects of a series of flavonoids extracted from the heartwoods, roots, and leaves of Dalbergia tonkinensis Prain, widely used in traditional medicine, were assessed. Rat aorta rings, tail artery myocytes, and docking and molecular dynamics simulations were used to analyse their effect on these channels. Formononetin, orobol, pinocembrin, and biochanin A showed a marked myorelaxant activity, particularly in rings stimulated by moderate rather than high KCl concentrations. Ba2+ currents through CaV1.2 channels (IBa1.2) were blocked in a concentration-dependent manner by sativanone, 3'-O-methylviolanone, pinocembrin, and biochanin A, while it was stimulated by ambocin. Sativanone, dalsissooside, and eriodictyol inhibited, while tectorigenin 7-O-[ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside], ambocin, butin, and biochanin A increased IKCa1.1. In silico analyses showed that biochanin A, sativanone, and pinocembrin bound with high affinity in target-sensing regions of both channels, providing insight into their potential mechanism of action. In conclusion, Dalbergia tonkinensis is a valuable source of mono- and bifunctional, vasoactive scaffolds for the development of novel antihypertensive drugs.


Asunto(s)
Dalbergia , Hipertensión , Animales , Pueblo Asiatico , Humanos , Extractos Vegetales/farmacología , Ratas , Vasodilatadores/farmacología
17.
Biomed Pharmacother ; 150: 112990, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462335

RESUMEN

As a traditional Chinese medicine, Dalbergia tsoi Merr.et Chun (JZX) has been used for the treatment of wounds since ancient times. However, the active compounds and molecular mechanisms of JZX in the acceleration of wound healing are still unknown. Herein, we explored the main active compounds and key molecular mechanisms by which JZX accelerates wound healing. The ethanol extract of JZX was subjected to UPLC-Q-Orbitrap HRMS analysis to identify the main compounds. The pharmacological effect of JZX on wound healing was evaluated using a mouse excision wound model. Network pharmacology was utilized to predict the effective compounds and related signal transduction pathways of JZX that were involved in accelerating wound healing. The predicted key signaling pathways were then validated by immunohistochemical analysis. Interactions between the active compounds and therapeutic targets were confirmed by molecular docking analysis. JZX accelerated wound healing, improved tissue quality, and inhibited inflammation and oxidative stress. Moreover, our results suggested that the active components of JZX, such as butin, eriodyctiol, and formononetin, are the key compounds that facilitate wound treatment. Our studies also indicated that JZX accelerated wound healing by regulating the PI3K/Akt signaling pathway and inducing the expression of TGF-ß1, FGF2, VEGFA, ECM1, and α-SMA at different stages of skin wound healing. The JZX extract accelerates wound healing by reducing inflammation and inhibiting oxidative stress, regulating the PI3K/Akt signaling pathway, and promoting the expression of growth factors, suggesting that JZX has potential clinical applicability in wound treatment.


Asunto(s)
Dalbergia , Inflamación , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cicatrización de Heridas
18.
Molecules ; 27(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35408733

RESUMEN

The complexity of metabolites in traditional Chinese medicine (TCM) hinders the comprehensive profiling and accurate identification of metabolites. In this study, an approach that integrates enhanced column separation, mass spectrometry post-processing and result verification was proposed and applied in the identification of flavonoids in Dalbergia odorifera. Firstly, column chromatography fractionation, followed by liquid chromatography-tandem mass spectrometry was used for systematic separation and detection. Secondly, a three-level data post-processing method was applied to the identification of flavonoids. Finally, fragmentation rules were used to verify the flavonoid compounds. As a result, a total of 197 flavonoids were characterized in D. odorifera, among which seven compounds were unambiguously identified in level 1, 80 compounds were tentatively identified by MS-DIAL and Compound Discoverer in level 2a, 95 compounds were annotated by Compound discoverer and Peogenesis QI in level 2b, and 15 compounds were exclusively annotated by using SIRIUS software in level 3. This study provides an approach for the rapid and efficient identification of the majority of components in herbal medicines.


Asunto(s)
Dalbergia , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Dalbergia/química , Medicamentos Herbarios Chinos/análisis , Flavonoides/química , Espectrometría de Masas , Medicina Tradicional China , Programas Informáticos
19.
Molecules ; 27(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335342

RESUMEN

Dalbergia sissoo is a woody plant with economic and medicinal value. As the pharmacological qualities and properties of the wood from this plant primarily depend on its extractives, in this study, the metabolomic analysis of extractives from its stems was carried out using UPLC-MS/MS. A total of 735 metabolites were detected from two groups of samples, heartwood and sapwood, with the largest number of terpenoids in type and the largest number of flavonoids in quantity. The PCA and cluster analysis showed significant differences in the metabolite composition between the two groups. The differential metabolites were mainly organic oxygen compounds, flavonoids, and isoflavones. Among the 105 differential metabolites, 26 metabolites were significantly higher in relative content in sapwood than in heartwood, while the other 79 metabolites were significantly higher in relative content in heartwood than in sapwood. KEGG metabolic pathway enrichment analysis showed that these differential metabolites were mainly enriched in three metabolic pathways: Flavonoid biosynthesis, isoflavonoid biosynthesis, and flavonoid and flavonol biosynthesis. This study provides a reference for metabolomics studies in Dalbergia and other woody plants.


Asunto(s)
Dalbergia , Cromatografía Liquida , Metabolómica , Extractos Vegetales/análisis , Espectrometría de Masas en Tándem
20.
J Pharm Pharmacol ; 74(5): 740-749, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35299250

RESUMEN

OBJECTIVES: Dalbergia ecastaphyllum (L.) Taub. is a semi-prostrate species associated with estuaries, mangroves and dunes. This plant species has great ecological and economic importance, especially concerning apiculture pasture and Brazilian red propolis production. In this study, non-clinical toxicological evaluations of the hydroalcoholic extract of D. ecastaphyllum stems (DEHE), the resin production source, were conducted. In addition, the action of DEHE on genomic instability and colon carcinogenesis was investigated. METHODS AND RESULTS: The extract's chemical profile was analysed by HPLC, and medicarpin, vestitol and neovestitol were found as major compounds. DEHE showed an IC50 equivalent to 373.2 µg/ml and LC50 equal 24.4 mg/L, when evaluated using the XTT colorimetric test and the zebrafish acute toxicity assay, respectively. DEHE was neither genotoxic nor cytotoxic at the highest dose, 2000 mg/kg, by peripheral blood micronucleus test. The treatments DEHE (6 and 24 mg/kg) led to the reduction of micronuclei induced by doxorubicin (DXR) in mice. Furthermore, significantly higher serum levels of reduced glutathione were observed in animals treated with DEHE plus DXR, revealing an antioxidant effect. Treatments with DEHE (48 mg/kg) led to a significant reduction in pre-neoplastic lesions induced by the 1,2-dimethylhydrazine (DMH) carcinogen in the rat colon. Immunohistochemical analysis revealed significantly lower levels of expression of COX-2 (86%) and PCNA (83%) in the colon of rats treated with DEHE plus DMH, concerning those treated with the carcinogen. CONCLUSIONS: These results indicate the involvement of anti-inflammatory and antiproliferative pathways in the protective effect of DEHE.


Asunto(s)
Dalbergia , Própolis , Animales , Ratones , Ratas , Brasil , Carcinógenos , Quimioprevención , Dalbergia/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Própolis/química , Própolis/farmacología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA