Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 35(9): 3782-93, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740509

RESUMEN

Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Mutación/genética , Secuencia de Aminoácidos , Animales , Biotinilación/genética , Células CHO , Cricetinae , Cricetulus , ADN Complementario/biosíntesis , ADN Complementario/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
2.
Pediatr Neurol ; 45(5): 283-91, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22000307

RESUMEN

Neonatal seizures are common, and often comprise the first clinical indicator of central nervous system dysfunction. Although most neonatal seizures are secondary to processes such as hypoxic-ischemic injury, infection, or cortical malformations (which are readily identifiable through routine testing and imaging), seizures secondary to inborn errors of metabolism can be much more difficult to diagnose, and thus a high index of suspicion is required. The early diagnosis of inborn errors of metabolism is crucial, considering that many can receive effective treatment (e.g., dietary supplementation or restriction) with favorable long-term outcomes. This review emphasizes the importance of considering inborn errors of metabolism in the differential diagnosis of neonatal seizures, discusses red flags for inborn errors of metabolism as a cause of neonatal seizures, and provides an overview of diagnoses and treatments of inborn errors of metabolism most commonly associated with neonatal seizures.


Asunto(s)
Epilepsia Benigna Neonatal/diagnóstico , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/terapia , Animales , Diagnóstico Diferencial , Suplementos Dietéticos , Epilepsia Benigna Neonatal/epidemiología , Epilepsia Benigna Neonatal/terapia , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Errores Innatos del Metabolismo/epidemiología , Tamizaje Neonatal/métodos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Convulsiones/terapia
3.
Epilepsia ; 47(5): 851-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16686649

RESUMEN

PURPOSE: A large multigenerational family with benign familial neonatal convulsions (BFNC) was revisited to identify the disease-causing mutation and to assess long-term outcome. METHODS: We supplemented the original data with recent clinical and neurophysiologic data on patients and first-degree relatives, including information on seizure recurrence. We conducted linkage analysis at the EBN1 and EBN2 loci, followed by mutation analysis of KCNQ2. We evaluated the qualitative effect of the KCNQ2 mutation at the messenger RNA (mRNA) level by using reverse-transcribed total RNA isolated from leukocytes. RESULTS: Thirteen relatives had a history of neonatal convulsions, 11 of whom showed remission within 2 months. One patient showed an atypical course of neonatal convulsions, developing photosensitive myoclonic epilepsy at age 13 years. We found suggestive linkage of the BFNC phenotype to the 20q13-EBN1 locus (lod score, 2.03) and an intronic mutation IVS14-6 C>A in KCNQ2 segregating with the trait in all affected members, but absent in 100 unrelated control subjects. This mutation creates a new, preferentially used, splice site. Alternative splicing adds 4 nt containing a premature stop codon to the transcript, resulting in a truncated protein after position R588. CONCLUSIONS: We detected and characterized a novel splicing mutation in the brain-specific KCNQ2 gene by using easily accessible blood leukocytes. Aberrant splicing cosegregates with BFNC but not with photosensitivity.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Canal de Potasio KCNQ2/genética , Mutación/genética , Linaje , Empalme del ARN/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos Par 20/genética , Cromosomas Humanos Par 8/genética , Análisis Mutacional de ADN , Epilepsia Benigna Neonatal/sangre , Epilepsia Refleja/genética , Familia , Femenino , Ligamiento Genético , Variación Genética , Humanos , Lactante , Recién Nacido , Leucocitos/química , Estudios Longitudinales , Masculino , Fenotipo , ARN/aislamiento & purificación , Sitios de Empalme de ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa/genética
4.
Curr Pharm Des ; 11(21): 2737-52, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16101452

RESUMEN

Idiopathic epilepsies are genetically determined diseases of the central nervous system characterized by typical epileptic seizures and EEG abnormalities but not associated with structural brain lesions. In recent years, an increasing number of mutations associated with idiopathic epilepsy syndromes were identified in genes encoding subunits of voltage- or ligand-gated ion channels. These encouraging results provide a plausible pathophysiological concept, since ion channels form the basis for neuronal excitability and are the major targets for anticonvulsive pharmacotherapy. The first epilepsy genes were identified for rare autosomal dominant syndromes within large pedigrees. Recently, a few mutations were also found for the frequent classical forms of idiopathic generalized epilepsies (IGE), for example absence or juvenile myoclonic epilepsy. The mutations can affect ion channels which on one hand have been known since several decades to be crucial for neuronal function, such as the voltage-gated sodium channel or the GABA(A) receptor, or on the other hand were newly identified within the last decade as KCNQ potassium channels or the ClC-2 chloride channel. Functional studies characterizing the molecular defects of the mutant channels point to a central role of GABAergic synaptic inhibition in the pathophysiology of IGE. Furthermore, newly discovered genes may be suitable as novel targets for pharmacotherapy such as KCNQ channels for the anticonvulsant drug retigabine. Altogether, these genetic and pathophysiological investigations will enhance our knowledge about the understanding of epileptogenesis and can help to improve anticonvulsive therapy.


Asunto(s)
Epilepsia/fisiopatología , Canales Iónicos/fisiología , Animales , Epilepsia/genética , Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/fisiopatología , Epilepsia del Lóbulo Frontal/genética , Epilepsia del Lóbulo Frontal/fisiopatología , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatología , Humanos , Recién Nacido , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canales Iónicos/genética , Mutación , Relación Estructura-Actividad
5.
Brain ; 126(Pt 12): 2726-37, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14534157

RESUMEN

Benign familial neonatal convulsions (BFNC) is a rare autosomal dominant generalized epilepsy of the newborn infant. Seizures occur repeatedly in the first days of life and remit by approximately 4 months of age. Previously our laboratory cloned two novel potassium channel genes, KCNQ2 and KCNQ3, and showed that they are mutated in patients with BFNC. In this report, we characterize the breakpoints of a previously reported interstitial deletion in the KCNQ2 gene and show that only KCNQ2 is deleted. We identify 11 novel mutations in KCNQ2 and one novel mutation in the KCNQ3 potassium channel genes. In one family, the phenotype extends beyond neonatal seizures and includes rolandic seizures, and a subset of families has onset of seizures in infancy. In the Xenopus oocyte expression system, we characterize five KCNQ2 and one KCNQ3 disease-causing mutations. These mutations cause a variable loss of function, and selective effects on the biophysical properties of KCNQ2/KCNQ3 heteromultimeric channels. We report here the first dominant negative mutation in KCNQ2 that has a phenotype of neonatal seizures without permanent clinical CNS impairment.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Mutación , Canales de Potasio/genética , Animales , Análisis Mutacional de ADN/métodos , Eliminación de Gen , Humanos , Recién Nacido , Canal de Potasio KCNQ2 , Canal de Potasio KCNQ3 , Oocitos/metabolismo , Técnicas de Placa-Clamp , Linaje , Canales de Potasio/fisiología , Canales de Potasio con Entrada de Voltaje , ARN Complementario/genética , Transcripción Genética , Xenopus laevis
6.
Epilepsia ; 43 Suppl 9: 21-5, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12383275

RESUMEN

Genetic defects have been recently identified in certain inherited epilepsy syndromes in which the phenotypes are similar to those of common idiopathic epilepsies. Mutations in the neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunit genes have been detected in families with autosomal dominant nocturnal frontal lobe epilepsy. Both receptors are components of neuronal acetylcholine receptor, a ligand-gated ion channel in the brain. Furthermore, mutations of two K+ channel genes also were identified as the underlying genetic abnormalities of benign familial neonatal convulsions. Mutations in the voltage-gated Na+-channel alpha1 and beta1 subunit genes were found as the cause of generalized epilepsy with febrile seizures plus, a clinical subset of febrile convulsions. Mutation of a voltage-gated K+-channel gene can cause partial seizures associated with periodic ataxia type 1 and some forms of juvenile myoclonic epilepsy can result from mutations of a Ca2+ channel. This line of evidence suggests the involvement of channels expressed in the brain in the pathogenesis of certain types of epilepsy. Our working hypothesis is to view certain idiopathic epilepsies as disorders of ion channels (i.e., "channelopathies"). Such a hypothesis should provide a new insight into our understanding of the genetic background of epilepsy.


Asunto(s)
Epilepsia Benigna Neonatal , Epilepsia , Epilepsia/genética , Canales Iónicos/genética , Adulto , Canales de Calcio/genética , Aberraciones Cromosómicas , Epilepsias Parciales/genética , Epilepsia/etiología , Epilepsia Benigna Neonatal/genética , Epilepsia del Lóbulo Frontal/genética , Epilepsia Generalizada/genética , Genes Dominantes , Humanos , Recién Nacido , Biología Molecular , Mutación , Linaje , Fenotipo , Canales de Potasio/genética , Canales de Potasio con Entrada de Voltaje/genética , Convulsiones Febriles/genética , Sueño , Síndrome , Factores de Tiempo
7.
Am J Med Genet ; 106(2): 146-59, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11579435

RESUMEN

Ion channels provide the basis for the regulation of excitability in the central nervous system and in other excitable tissues such as skeletal and heart muscle. Consequently, mutations in ion channel encoding genes are found in a variety of inherited diseases associated with hyper- or hypoexcitability of the affected tissue, the so-called 'channelopathies.' An increasing number of epileptic syndromes belongs to this group of rare disorders: Autosomal dominant nocturnal frontal lobe epilepsy is caused by mutations in a neuronal nicotinic acetylcholine receptor (affected genes: CHRNA4, CHRNB2), benign familial neonatal convulsions by mutations in potassium channels constituting the M-current (KCNQ2, KCNQ3), generalized epilepsy with febrile seizures plus by mutations in subunits of the voltage-gated sodium channel or the GABA(A) receptor (SCN1B, SCN1A, GABRG2), and episodic ataxia type 1-which is associated with epilepsy in a few patients--by mutations within another voltage-gated potassium channel (KCNA1). These rare disorders provide interesting models to study the etiology and pathophysiology of disturbed excitability in molecular detail. On the basis of genetic and electrophysiologic studies of the channelopathies, novel therapeutic strategies can be developed, as has been shown recently for the antiepileptic drug retigabine activating neuronal KCNQ potassium channels.


Asunto(s)
Epilepsia/metabolismo , Canales Iónicos/metabolismo , Ataxia/genética , Ataxia/metabolismo , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Epilepsia/genética , Epilepsia/terapia , Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/metabolismo , Epilepsia del Lóbulo Frontal/genética , Epilepsia del Lóbulo Frontal/metabolismo , Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Genes Dominantes , Humanos , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/genética , Mutación , Miocimia/genética , Miocimia/metabolismo , Convulsiones Febriles/genética , Convulsiones Febriles/metabolismo
8.
Nat Genet ; 28(1): 46-8, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11326274

RESUMEN

Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively. Disruption of GABAergic neurotransmission mediated by gamma-aminobutyric acid (GABA) has been implicated in epilepsy for many decades. We now report a K289M mutation in the GABA(A) receptor gamma2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABA(A) receptor is directly involved in human idiopathic epilepsy.


Asunto(s)
Epilepsia/genética , Mutación , Receptores de GABA-A/genética , Secuencia de Aminoácidos , Segregación Cromosómica , Secuencia Conservada , Conductividad Eléctrica , Epilepsia Benigna Neonatal/genética , Epilepsia del Lóbulo Frontal/genética , Epilepsia Generalizada/genética , Femenino , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Subunidades de Proteína , Convulsiones Febriles/genética , Homología de Secuencia de Aminoácido
9.
Lakartidningen ; 97(45): 5102-6, 2000 Nov 08.
Artículo en Sueco | MEDLINE | ID: mdl-11116887

RESUMEN

Specific defects in neuronal ion channel proteins have recently been identified in some forms of hereditary epilepsy. A deletion of 300 amino acids from the COOH terminal of the K+ channel reduces the electrical stability of the neuron in subjects with benign familial neonatal seizures. Defects in the protein subunits of the Na+ channel may prolong neuronal depolarization in children with generalized epilepsy with febrile convulsions. A point mutation in one of the ACh receptor subunits may reduce the function of inhibitory interneurons in subjects with autosomal dominant nocturnal frontal lobe epilepsy. Finally, several different defects in the Ca2+ channel amino acid sequence have been identified in various types of epilepsy in mice in which symptoms and EEG show similarities to those in human petit mal. This remarkable progress in the precise localization of ion channel defects in epilepsy provides a novel basis for the development of more differentiated diagnosis and pharmacological therapy.


Asunto(s)
Deleción Cromosómica , Epilepsia/genética , Secuencia de Aminoácidos , Animales , Canales de Calcio/genética , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia Benigna Neonatal/genética , Epilepsia del Lóbulo Frontal/genética , Epilepsia Generalizada/genética , Humanos , Recién Nacido , Ratones , Mutación Puntual , Canales de Potasio/genética , Receptores Colinérgicos/genética , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA